4.已知x>0,y>0,且x+y+xy-3=0,则x+2y的最小值是?
3个回答
展开全部
x>0,y>0,并且还有
x+y+xy=3,则(x+1)y=3一x,
y=(3一x)/(x+1),0<x<3。
x+2y=x+2(3一x)/(x+1)
=x+2(4一x一1)/(x+1)
=x+8/(x+1)一2
=(x+1)+8/(x+1)一3
≥2√8一3=4√2一3。
当且仅当x+1=8/(x+1),即
x=2√2一1时,(x+2y)min=4√2一3。
x+y+xy=3,则(x+1)y=3一x,
y=(3一x)/(x+1),0<x<3。
x+2y=x+2(3一x)/(x+1)
=x+2(4一x一1)/(x+1)
=x+8/(x+1)一2
=(x+1)+8/(x+1)一3
≥2√8一3=4√2一3。
当且仅当x+1=8/(x+1),即
x=2√2一1时,(x+2y)min=4√2一3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询