定积分比较大小的问题
教材上说如果函数f、g在[a,b]可积,并且f≥g在[a,b]上成立,那么∫abf(x)dx≥∫abg(x)dx(用∫ab表示定积分了)我想问的是若函数f、g在[a,b]...
教材上说如果函数f、g在[a,b]可积,并且f≥g在[a,b]上成立,那么
∫abf(x)dx≥∫abg(x)dx (用∫ab表示定积分了)
我想问的是
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx 是否成立??
如果不成立请帮忙举出一个反例
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx,我主要是想问,是不是总是严格的大于,而不会有相等的情况呢 展开
∫abf(x)dx≥∫abg(x)dx (用∫ab表示定积分了)
我想问的是
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx 是否成立??
如果不成立请帮忙举出一个反例
若函数f、g在[a,b]可积,并且f>g在[a,b]上成立,那么
∫abf(x)dx>∫abg(x)dx,我主要是想问,是不是总是严格的大于,而不会有相等的情况呢 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询