2个回答
展开全部
由余弦定理:cosA=(b^2+c^2-a^2)/(2bc),cosB=(a^2+c^2-b^2)/(2ac), 所以
sin(A-B)/sinC (对分子用和差化积公式)
=(sinAcosB-cosAsinB)/sinC (由正弦定理:sinA/sinC=a/c,sinB/sinC=b/c)
=(acosB-bcosA)/c (由余弦定理)
=[a*(a^2+c^2-b^2)/(2ac)-b*(b^2+c^2-a^2)/(2bc)]/c
=[(a^2+c^2-b^2)-(b^2+c^2-a^2)]/(2c^2)
=(2a^2-2b^2)/(2c^2)
=(a^2-b^2)/c^2
即 (a^2-b^2)/c^2=sin(A-B)/sinC.
sin(A-B)/sinC (对分子用和差化积公式)
=(sinAcosB-cosAsinB)/sinC (由正弦定理:sinA/sinC=a/c,sinB/sinC=b/c)
=(acosB-bcosA)/c (由余弦定理)
=[a*(a^2+c^2-b^2)/(2ac)-b*(b^2+c^2-a^2)/(2bc)]/c
=[(a^2+c^2-b^2)-(b^2+c^2-a^2)]/(2c^2)
=(2a^2-2b^2)/(2c^2)
=(a^2-b^2)/c^2
即 (a^2-b^2)/c^2=sin(A-B)/sinC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询