高中数学中椭圆和双曲线的离心率e和形状有什么关系?
展开全部
在椭圆中,e=c/a,而a^2-b^2=c^2,e越接近于1,则c越接近于a,从而b=√(a^2-c^2)越小,因此,椭圆越扁;反之,e越接近于0,c越接近于0,从而b越接近于a,这时椭圆就接近于圆。
所以椭圆离心率越大,它越扁。
在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。
在抛物线中,离心率始终等于1.
所以椭圆离心率越大,它越扁。
在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。
在抛物线中,离心率始终等于1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询