求这道题详细的计算过程

求这道题详细的计算过程老师在讲这道题的时候把f²(x)的展开式里写成了A(1-x²),是不是应该是A²(1-x²)?... 求这道题详细的计算过程老师在讲这道题的时候把f²(x)的展开式里写成了A(1-x²),是不是应该是A²(1-x²)? 展开
 我来答
ps...7@163.com
2017-03-15 · 超过36用户采纳过TA的回答
知道答主
回答量:48
采纳率:0%
帮助的人:16万
展开全部
(1)f'(x)=1/x-a,根据题意,在区间(1,+∞)上为减函数,即当x>1的时候,f'(x)<0
所以1/x-a<0
1/x<a
得到a>1.
g(x)'=e^x-a
根据题意,要在(1,+∞)上有最小值,即当x>1的时候,g'(x)>0,为增函数,所以:
e^x-a>0
e^x>a
即:e>a.
所以a的取值范围为:(1,e).
(2)g(x)'=e^x-a,在区间(-1,+∞)为单调增函数,即当x>-1的时候,g'(x)>0,为增函数,所以:
e^x-a>0
e^x>a
e^x>e^(-1)>a
则:a<1/e.
此时f'(x)=1/x-a,
当0<x<e<1/a的时候,f'(x)>0,为增函数。
当e<x=1/a的时候,f'(x)=0
当x>1/a>e的时候,f'(x)<0,为减函数。
所以只有一个零点。
迷路明灯
2017-03-15 · TA获得超过2.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:79%
帮助的人:5416万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式