1个回答
展开全部
(1) y'' = 2, y' = 2x+C1, y = x^2+C1x+C2
(2) y'' = 2x, y' = x^2+C1, y = (1/3)x^3+C1x+C2
(3) y'' = sinx, y' = -cosx+C1, y = -sinx + C1x+C2
(4) y'' = e^(2x), y' = (1/2)e^(2x) + C!, y = (1/4)e^(2x) + C1x + C2
(5) 特征方程:r^2-4r+3 = 0, r = 1, 3, 通解 y = C1e^x + C2e^(3x)
(6) 特征方程:r^2-2r+1 = 0, r = 1, 1, 通解 y = (C1+C2x)e^x
(7) 特征方程:r^2-6r= 0, r = 0, 6, 通解 y = C1 + C2e^(6x)
(2) y'' = 2x, y' = x^2+C1, y = (1/3)x^3+C1x+C2
(3) y'' = sinx, y' = -cosx+C1, y = -sinx + C1x+C2
(4) y'' = e^(2x), y' = (1/2)e^(2x) + C!, y = (1/4)e^(2x) + C1x + C2
(5) 特征方程:r^2-4r+3 = 0, r = 1, 3, 通解 y = C1e^x + C2e^(3x)
(6) 特征方程:r^2-2r+1 = 0, r = 1, 1, 通解 y = (C1+C2x)e^x
(7) 特征方程:r^2-6r= 0, r = 0, 6, 通解 y = C1 + C2e^(6x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询