求解答,高数题
展开全部
等价无穷小替换
∵ln(1+x)~x
∴ln[e^sinx+³√(1-cosx)]=ln[1+e^sinx+³√(1-cosx)-1]~e^sinx+³√(1-cosx)-1
∵arctanx~x
∴arctan[2³√(1-cosx)]~2³√(1-cosx)
∴原式=(1/2)lim(x→0) [e^sinx+³√(1-cosx)-1]/³√(1-cosx)
=(1/2){lim(x→0) [e^sinx-1]/³√(1-cosx)+ lim(x→0)³√(1-cosx)/³√(1-cosx)}
=1/2+(1/2)lim(x→0) [e^sinx-1]/³√(1-cosx)
再用等价无穷小替换
∵e^x-1~x
∴e^sinx-1~sinx~x
1-cosx~x²/2
∴原式=1/2+(1/2)lim(x→0) [e^sinx-1]/³√(1-cosx)
=1/2+(1/2)lim(x→0) x/³√(x²/2)
=1/2+(1/2)lim(x→0) ³√(2x)
=1/2
∵ln(1+x)~x
∴ln[e^sinx+³√(1-cosx)]=ln[1+e^sinx+³√(1-cosx)-1]~e^sinx+³√(1-cosx)-1
∵arctanx~x
∴arctan[2³√(1-cosx)]~2³√(1-cosx)
∴原式=(1/2)lim(x→0) [e^sinx+³√(1-cosx)-1]/³√(1-cosx)
=(1/2){lim(x→0) [e^sinx-1]/³√(1-cosx)+ lim(x→0)³√(1-cosx)/³√(1-cosx)}
=1/2+(1/2)lim(x→0) [e^sinx-1]/³√(1-cosx)
再用等价无穷小替换
∵e^x-1~x
∴e^sinx-1~sinx~x
1-cosx~x²/2
∴原式=1/2+(1/2)lim(x→0) [e^sinx-1]/³√(1-cosx)
=1/2+(1/2)lim(x→0) x/³√(x²/2)
=1/2+(1/2)lim(x→0) ³√(2x)
=1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |