怎样提高数学理解能力
1个回答
展开全部
一、原因
1.对基础知识掌握不够灵活.
2.缺乏独立分析理解题意的能力,不清楚题设中所给条件的作用.
3.对基本的数学思想方法不能灵活地运用.
4.对含参的题目有畏惧心理,不愿意去碰它.
我们知道学生要想学好数学,就必须进行解题练习.在解题中来
巩固数学知识,从而灵活地应用数学知识.这就要求学生具备一定
的数学解题能力,那么如何来提高学生的数学解题能力呢?
二、策略
1.认真落实数学基础知识的掌握
数学基础知识是数学中最基本的要素,只有把数学基础知识正确
地掌握好才有可能做到思维条理分明,找到解决问题的突破口,并
且也是进一步认识新对象,解决新问题的逻辑思维工具.而每一个
题目都是由若干个知识点组合得到,于是要解决它就必须掌握数学
基础知识.
2.教会学生如何去分析理解题意
解决数学题目的关键在于会分析、理解题意,将其转化到所学知
识点上去.分析理解题意,首先,要教会学生读题,读题时要慢,
边读边想边理解;其次,对数学信息进行筛选,捕捉有用的数学信
息;第三,用示意图来深挖题意.如果经常进行这样的训练,学生
独立解决问题的能力就会提高.题意分析理解错误往往是导致解题
错误的主要原因,只有正确理解题意,才有可能产生正确的解法,
所以分析理解题意是解决问题的关键.
3.培养学生掌握基本的数学思想方法
数学中的思想方法在整体上指导我们分析和理解数学问题,巧妙
地运用数学方法是解决数学问题的有效途径.如数形结合思想,就
是将抽象的数学语言与直观的图形结合起来,化难为易、化抽象为
直观.于是老师在平时的教学中必须将数学思想方法贯穿于教学之
中.
4.培养学生善于总结、归纳的习惯
学生解题后,可以从解题的方法、解题的规律、解题的策略等方
面进行多角度、多方面的总结,这样才能举一反三、触类旁通提高
解题能力.
5.培养学生善于变式的好习惯
在解决一道题后,要善于变成多个与原题内容或形式不同,但解
法类似的题目.这样就可以扩大视野,深化知识,从而提高解题能
力.
总之,解题能力的提高,需要教师根据教学实际,坚持有目
的、有计划、有针对性地进行培养和训练.最重要的是让学生在解
题过程中获得乐趣,产生灵感、悟出解题的正确思路和方法.
1.对基础知识掌握不够灵活.
2.缺乏独立分析理解题意的能力,不清楚题设中所给条件的作用.
3.对基本的数学思想方法不能灵活地运用.
4.对含参的题目有畏惧心理,不愿意去碰它.
我们知道学生要想学好数学,就必须进行解题练习.在解题中来
巩固数学知识,从而灵活地应用数学知识.这就要求学生具备一定
的数学解题能力,那么如何来提高学生的数学解题能力呢?
二、策略
1.认真落实数学基础知识的掌握
数学基础知识是数学中最基本的要素,只有把数学基础知识正确
地掌握好才有可能做到思维条理分明,找到解决问题的突破口,并
且也是进一步认识新对象,解决新问题的逻辑思维工具.而每一个
题目都是由若干个知识点组合得到,于是要解决它就必须掌握数学
基础知识.
2.教会学生如何去分析理解题意
解决数学题目的关键在于会分析、理解题意,将其转化到所学知
识点上去.分析理解题意,首先,要教会学生读题,读题时要慢,
边读边想边理解;其次,对数学信息进行筛选,捕捉有用的数学信
息;第三,用示意图来深挖题意.如果经常进行这样的训练,学生
独立解决问题的能力就会提高.题意分析理解错误往往是导致解题
错误的主要原因,只有正确理解题意,才有可能产生正确的解法,
所以分析理解题意是解决问题的关键.
3.培养学生掌握基本的数学思想方法
数学中的思想方法在整体上指导我们分析和理解数学问题,巧妙
地运用数学方法是解决数学问题的有效途径.如数形结合思想,就
是将抽象的数学语言与直观的图形结合起来,化难为易、化抽象为
直观.于是老师在平时的教学中必须将数学思想方法贯穿于教学之
中.
4.培养学生善于总结、归纳的习惯
学生解题后,可以从解题的方法、解题的规律、解题的策略等方
面进行多角度、多方面的总结,这样才能举一反三、触类旁通提高
解题能力.
5.培养学生善于变式的好习惯
在解决一道题后,要善于变成多个与原题内容或形式不同,但解
法类似的题目.这样就可以扩大视野,深化知识,从而提高解题能
力.
总之,解题能力的提高,需要教师根据教学实际,坚持有目
的、有计划、有针对性地进行培养和训练.最重要的是让学生在解
题过程中获得乐趣,产生灵感、悟出解题的正确思路和方法.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询