sinx的平方的导数怎样求
具体回答如下:
(sin²x)'
= [(1-cos2x)/2]'
= [1/2 - (cos2x)/2]'
= 0 - ½(-sin2x)(2x)'
= ½(sin2x)×2
= sin2x
导数的意义:
导数的本质是通过极限的概念对函数进行局部的线性逼近,例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
(sin²x)'
= [(1-cos2x)/2]'
= [1/2 - (cos2x)/2]'
= 0 - ½(-sin2x)(2x)'
= ½(sin2x)×2
= sin2x
单位圆定义
图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的y坐标等于 sinθ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度 1,所以有了 sinθ=y/1。
单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于 1 查看无限数目的三角形的一种方式。即sinθ=AB,与y轴正方向一样时正,否则为负。
y=sin²x
y'=2sinx·(sinx)'
=2sincosx
=sin2x
y=sin(x²)
y'=cos(x²)·(x²)'
=2x·cos(x²)