如何理解spark中RDD和DataFrame的结构

 我来答
地瓜说机
2017-10-25 · TA获得超过2.9万个赞
知道大有可为答主
回答量:2.3万
采纳率:91%
帮助的人:1.2亿
展开全部
你对RDD的理解是对的,RDD就是一个分布式的无序的列表。

RDD中可以存储任何的单机类型的数据,但是,直接使用RDD在字段需求明显时,存在算子难以复用的缺点。

例如,现在RDD存的数据是一个Person类型的数据,现在要求所有每个年龄段(10年一个年龄段)的人中最高的身高与最大的体重。

使用RDD接口,因为RDD不了解其中存储的数据的具体结构,数据的结构对它而言是黑盒,于是这就需要用户自己去写一个很特化的聚合的函数来完成这样的功能。

而有了DataFrame,则框架会去了解RDD中的数据是什么样的结构的,用户可以说清楚自己对每一列进行什么样的操作,这样就有可能可以实现一个算子,用在多个列上,比较容易进行算子的复用。甚至,未来又要同时求出每个年龄段内不同的姓氏有多少个,则使用RDD接口,之前的函数需要改动很大才能满足需求,而使用DataFrame接口,则只需要添加对这一个列的处理,原来的max/min的相关列处理都可保持不变。

总而言之,DataFrame相关接口就是RDD的一个扩展,让RDD了解了RDD中存储的数据包含哪些列,并可以在列上进行操作。

另外,DataFrame基本上快要被Dataset接口取代了,你可以再去了解下Dataset接口。

最后,打个广告:如果是百度内部的同学看到我的答案,有类似需求时,欢迎使用我们的Bigflow项目,API设计得比Spark更简单易用,且用户代码可复用性更强。我们的Schema相关接口在代码可复用程度上要远超DataFrame/Dataset——厂外同学听我在这儿“吹”不信就罢了,直接忽略即可,咱们也不用争辩,短期内暂无法给你证明。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式