∫xcosxdx的值是多少?

 我来答
爱教育爱思考2021
高能答主

2019-05-05 · 我是教育培训达人,专注于教育科技信息分享
爱教育爱思考2021
采纳数:92 获赞数:35171

向TA提问 私信TA
展开全部

解:∫xcosxdx

=∫xdsinx

=x*sinx-∫sinxdx

=x*sinx+cosx+C

即∫xcosxdx的结果为x*sinx+cosx+C。

扩展资料:

1、分部积分法的形式

(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。

例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx

(2)通过对u(x)求微分后使其类型与v(x)的类型相同或相近。

例:∫xarctanxdx=∫arctanxd(1/2x^2)

=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx

(3)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。

例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx

=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx

=e^x*sinx-e^x*cosx-∫e^x*sinxdx

则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得

∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C

2、常用的不定积分公式

∫1dx=x+C、∫e^xdx=e^x+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C

参考资料来源:百度百科-分部积分法

一个人郭芮
高粉答主

推荐于2019-08-22 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84689

向TA提问 私信TA
展开全部
使用分部积分法
得到∫xcosxdx
=∫x d(sinx)
= x *sinx -∫sinx dx
= x *sinx +cosx +C,C为常数
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式