求高一数学函数题详细解答过程
展开全部
f(x)=-(x²-1)/(x²+1)
=-(x²+1-2)/(x²+1)
=-[(x²+1)-2]/(x²+1)
=-(x²+1)/(x²+1)+2/(x²+1)
=-1+2/(x²+1)
x²+1>=1
所以0<1/(x²+1)<=1
0<2/(x²+1)<=2
-1+0<-1+2/(x²+1)<=-1+2
值域(-1,1]
=-(x²+1-2)/(x²+1)
=-[(x²+1)-2]/(x²+1)
=-(x²+1)/(x²+1)+2/(x²+1)
=-1+2/(x²+1)
x²+1>=1
所以0<1/(x²+1)<=1
0<2/(x²+1)<=2
-1+0<-1+2/(x²+1)<=-1+2
值域(-1,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询