1个回答
2018-04-06
展开全部
g(x)=x^2-3x+2-xlnx
g'(x)=2x-3-lnx-1
=2x-lnx-4
(g'(x))'=2-1/x
x=1/2时等于0
故g'(x)在(0,1/2)递减,在(1/2,正无穷)递增
故g'(x)min=g'(1/2)约等于-2.3609小于0
显然g'(3)>0
g'(1/e^5)>0
g'(2)<0
故有x1,x2使g'(x)=0
故g(x)在(0,x1)增
(x1,x2)减
(x2,正无穷)增
故g(x)唯一极小值x0为x2
又因为x2在(2,3)
g(2)=4-6+2-2ln2=-2*0.693=-1.3862
g(3)=9-9+2-3ln3<2-3ln4=2-6ln2=-2.1586?
得证
g'(x)=2x-3-lnx-1
=2x-lnx-4
(g'(x))'=2-1/x
x=1/2时等于0
故g'(x)在(0,1/2)递减,在(1/2,正无穷)递增
故g'(x)min=g'(1/2)约等于-2.3609小于0
显然g'(3)>0
g'(1/e^5)>0
g'(2)<0
故有x1,x2使g'(x)=0
故g(x)在(0,x1)增
(x1,x2)减
(x2,正无穷)增
故g(x)唯一极小值x0为x2
又因为x2在(2,3)
g(2)=4-6+2-2ln2=-2*0.693=-1.3862
g(3)=9-9+2-3ln3<2-3ln4=2-6ln2=-2.1586?
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询