浅谈初中数学复习课的几种方法

 我来答
新野旁观者
2018-06-20 · 知道合伙人教育行家
新野旁观者
知道合伙人教育行家
采纳数:106273 获赞数:787048
从事教育行业30年资深教师。

向TA提问 私信TA
展开全部
课堂教学是教学的基本形式,是学生获取信息、锻炼提高多种能力和养成一定思想观念的主渠道。数学复习课作为数学课堂教学的一种重要形式,也是学生数学知识的形成、发展和创造能力培养的重要环节。但现在的复习课教学,大多数还是以教师讲解为主,以总结概念、精讲例题来完成,这样的演绎体系难以调动学生情绪、进入学习角色的兴奋点,不利于学生学习兴趣的激发和求知欲望的形成。所以,学生直言:上复习课枯燥、乏味、无激情。教师感叹:讲过三遍学生还是错?!究竟如何克服弊端,使得初中数学复习课的教学能够更有效,使不同层次学习水平的学生提高学习效率?
一、重视课本,全面复习基础知识,加强基本技能训练
在复习时应注意用好课本。先读懂、理解、吃透教材,全面掌握初中数学基础知识,领悟和把握真正的知识体系和能力结构,重新梳理课本中的基础知识及各类习题,做到全面、扎实、系统,形成知识网络。具体做法如下。
1.熟练掌握运用基础知识。
扎实熟练地掌握概念、定义、定理、法则、公式,准确地对数学语言如文字语言、图形语言、符号语言等进行表达与运用,重视公式的正用、逆用和变形应用,重视定理的推导与应用,重视定义的理解和应用,等等。
2.重视课本的典型性、示范性例题,练习和作业也要让学生弄懂、会做,并注意解题方法的归纳和整理。
应充分认识例题本身所蕴含的价值,掌握其中的共性通法,并达到熟练程度,掌握数学思想方法的精髓;注意通过纵向挖掘,横向加强不同知识点的联系,达到优化认知结构、阔眼界、活跃思维的目的。
3.深入研究典型习题,充分挖掘其价值。
如:习题的多种解法与应用;条件与结论互换,命题能否成立;加强或削弱命题的条件或结论,能否得到正确命题。经常这样训练,可达到以少胜多,提高创新能力的目的。决定复习效果的关键因素不是题目的数量,而在于题目的质量和处理水平。做十道考查思路重复的题,不如深入透彻地掌握一道典型题。
二、创设有效的教学情境,激发学生兴趣
数学复习课不是新授课,是不是不需要创设教学情境呢?其实,复习课更需要创设合理的教学情境以保证课堂教学的新颖性、有效性,在情境中串起一堂课的主线,缓缓铺来,让学生自然进入深一步的学习。
如复习“二次根式”单元内容时,为更好地让学生清楚开方时注意正负数问题,给学生讲了个“蚊子与牛一样重”的故事。从前有一只骄傲的蚊子,总认为自己的体重和牛是一样的重。有一天,它找到了牛,并说出了体重一样的理由。它认为,可以设自己的体重为a,牛的体重为b,则有a2-2ab+b2=b2-2ab+a2,左右两边分别化为(a-b)2=(b-a)2,从而有a-b=b-a,移项得2a=2b,即a=b。蚊子骄傲地把自己的理由说完,牛瞪大了眼睛,听傻了!你能帮助牛找出蚊子论证中的问题吗?学生在这样的情境中发现与已有的知识和经验存在或大或小的差别和冲突,在认知相悖中激发起了对新知识的追求欲望。
为问题饰以背景,在知识的重点和难点处为学生的思维留下点棱角,布下思维的空缺,敦促学生在交岔口形成迫切心理,这样能使学生感到别样的新鲜,产生探索的欲望和积极的学习态度,从而能收到较好的复习效果。
但情境的创设并不是处处需要,而应根据具体情况进行具体分析,有些时候通过现实情境引入数学内容反而引起逻辑的混乱。所以,在选择是否创设情境、创设什么样的合理情境时,应该以此情境能否很好地承载数学知识作为标准,否则将是舍本逐末、画蛇添足。
三、用问题引领学生完善知识结构,深化知识理解
从学生擅长面入手来完善知识网络,有利于调动学生的学习兴趣;直观化的形式再现知识,有利于学生巩固知识和理清知识线;而适当的问题能调动学生的积极性,完善知识结构。
如“特殊的四边形”的复习课,可以通过设置下面的问题帮助理清知识脉络。
问题1:请你说说平行四边形,矩形,菱形,正方形,梯形,等腰梯形,直角梯形彼此之间有什么联系?
问题2:如何判断一个四边形是平行四边形?矩形,菱形,正方形,梯形,等腰梯形,直角梯形?
通过问题1的思考,通过维恩图让学生形成清晰的概念图,明白外延;而通过问题2,让学生填写图1箭头方向上的各种条件而使学生清楚各种特殊四边形之间的内在差异和变化联系,把握内涵。
用问题将相关知识(包括方法和技巧)自然、顺畅、扎实的联系起来,并有序地延展开去,能使知识得到深化发展。
复习课上的概念、知识要点等的简单重复是枯燥的、低效的,这样不能引导学生从较高的角度理顺知识的内在联系,只是单纯的讲述,使很多学生的认知模式错过了重组的时机。所以在复习时,我们可以将复习的有关概念、知识要点等编成问题,让学生见问题想概念及知识要点。如果此时的问题比较简单,但覆盖面较广,重点比较突出,那么学生就能通过自己的独立思考,回顾、整理学过的基础知识,完成配套练习,实现了网络基础知识和熟练基本技能的双赢效果。
四、精选例题引导学生积极思维,主动探究
例题的目的不是为了求得解答结果,而是通过题目的解答过程为学生掌握分析问题和解决问题的方法提供原形和模式,促进学习迁移。所以,选题除了注意题目类型要精选,尽量覆盖复习的内容,有一定的综合性,还要注意变式、题组,这在复习中往往具有特殊效果。
例如:平行四边形的复习课,可以选用以下变式例题。 D
例1.如图1, ABCD中,已知AE=CF,AF与BE交于点G,
CE与DF交于点H,求证: AFCE, EGFH。
B

例2. 如图2, ABCD中,已知AE=CF,
M,N是DE和FB的中点, 图1
求证: ENFM。

例3. 如图3,已知: ABCD中,E,F是对角线BD上两点,
BE=DF,G,H分别是BA,DC延长线上点,
且AG=CH,连接GH,EH,HF,FG,
求证: GEHF。 图2

而在特殊的四边形的识别复习课中选择下面题组。
问题1:如图4,在任意四边形ABCD中,E,F,G,H依次
是AB,BC,CD,DA的中点。
四边形EFGH是什么图形? 图3
如果四边形ABCD是矩形,四边形EFGH又是什么图形?
如果四边形ABCD是菱形,四边形EFGH又是什么图形?
问题2:
(1)如果四边形EFGH是菱形,那么四边形ABCD要满足 什么条件呢? 图4
(2)如果四边形EFGH是矩形,那么四边形ABCD要满足什么条件呢?
问题3:四边形EFGH的形状与四边形ABCD的形状之间有什么联系呢?
环环相扣的问题不仅可以激发学生探究问题的兴趣,而且使学生学得主动,同时加深对知识的理解,有利于培养学生思维的灵活性和创造性。当学生经过努力完成问题沉浸在成功的喜悦时,老师又将一个看似熟悉但又不同的问题放在他们的面前。由于刚才的成功他们不会放弃眼前的问题主动探究。老师从不同的角度透视问题,开拓了学生的思路从而提高了他们的思维能力和探索能力。在例题解答之后,引导学生反思思考过程,总结解题的经验教训,对一些常用的数学思想方法、解题策略予以归纳概括,进一步提高学生的解题思维能力。提高复习课的有效性,把复习课当作新授课来上,彻底改变“以教师讲解为主,总结概念、精讲例题来完成”的局面,让复习课的教学“活”起来,使学生在更多地数学思维活动中经历、体验、探索数学,获得广泛的数学的价值和意义,是我们的数学教学永恒的追求。
江苏知嘛
2019-09-26 · 百度认证:江苏知嘛网络科技有限公司官方账号
江苏知嘛
“何秋光学前数学”是“知嘛网络科技”联袂中国学前数学思维训练 创始人-何秋光合力打造的在线教育平台。
向TA提问
展开全部
学习数学的高境界应该是变“学会”数学为“会学”数学
首先,考试中万万不能犯低级错误,比如将题目看错、数字写错、基本的计算算错、图形周长和面积的公式用反、单位名称看丢、平移时的格数数错等等。
说白了,就是不要把最基本的题目做错。要解决这个问题,只有全神贯注、集中全部的精力来读题、答题、运算。
其次,作为一个会学数学、爱动脑筋的学生,解决每一个实际问题最需要的是有一些基本的策略。因此,在复习中我总是不时强调对解题策略的使用。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式