具体回答如图:
对于上下限均为无穷,或被积分函数存在多个瑕点,或上述两类的混合,称为混合反常积分。对混合型反常积分,必须拆分多个积分区间,使原积分为无穷区间和无界函数两类单独的反常积分之和。
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
扩展资料:
积分都满足一些基本的性质。在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。
当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
虽然勒贝格积分是黎曼积分的扩展这点看上去并不是显而易见,但不难证明每个黎曼可积函数都是勒贝格可积的,并且当二者都有定义时积分值也是一致的。
函数f(x)在它的每一个可导点x。处都对应着一个唯一确定的数值——导数值f′(x),这个对应关系给出了一个定义在f(x)全体可导点的集合上的新函数。
若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数。
在最简单的情况下,对一个非负值的函数的积分可以看作是求其函数图像与轴之间的面积。勒贝格积分则将积分运算扩展到其它函数,并且也扩展了可以进行积分运算的函数的范围。
最早对积分运算的定义是对于非负值和足够光滑的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积。
但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析中的极限过程,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。
参考资料来源:百度百科——反常积分
2023-08-25 广告