求解高数积分问题
展开全部
∫ (-1->1) (1-x^2)^(5/2) dx
=∫ (-1->1) (1-x^2)^(5/2) dx
=[x.(1-x^2)^(5/2)]|(-1->1) + 5∫ (-1->1) x^2. (1-x^2)^(3/2) dx
=0 +5∫ (-1->1) x^2. (1-x^2)^(3/2) dx
=-5∫ (-1->1) (1-x^2). (1-x^2)^(3/2) dx +5∫ (-1->1) (1-x^2)^(3/2) dx
6∫ (-1->1) (1-x^2)^(5/2) dx =5∫ (-1->1) (1-x^2)^(3/2) dx
∫ (-1->1) (1-x^2)^(5/2) dx
=(5/6)∫ (-1->1) (1-x^2)^(3/2) dx
=(5/6)(3/4)∫ (-1->1) (1-x^2)^(1/2) dx
=(5/8)∫ (-1->1) (1-x^2)^(1/2) dx
=(5/4)∫ (0->1) (1-x^2)^(1/2) dx
=(5/4)∫ (0->π/2) (cosu )^2 du
=(5/8)∫ (0->π/2) (1+cos2u ) du
=(5/8)(π/2)
=(5/16)π
=∫ (-1->1) (1-x^2)^(5/2) dx
=[x.(1-x^2)^(5/2)]|(-1->1) + 5∫ (-1->1) x^2. (1-x^2)^(3/2) dx
=0 +5∫ (-1->1) x^2. (1-x^2)^(3/2) dx
=-5∫ (-1->1) (1-x^2). (1-x^2)^(3/2) dx +5∫ (-1->1) (1-x^2)^(3/2) dx
6∫ (-1->1) (1-x^2)^(5/2) dx =5∫ (-1->1) (1-x^2)^(3/2) dx
∫ (-1->1) (1-x^2)^(5/2) dx
=(5/6)∫ (-1->1) (1-x^2)^(3/2) dx
=(5/6)(3/4)∫ (-1->1) (1-x^2)^(1/2) dx
=(5/8)∫ (-1->1) (1-x^2)^(1/2) dx
=(5/4)∫ (0->1) (1-x^2)^(1/2) dx
=(5/4)∫ (0->π/2) (cosu )^2 du
=(5/8)∫ (0->π/2) (1+cos2u ) du
=(5/8)(π/2)
=(5/16)π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询