如何证明这个定积分的问题?

 我来答
没有北海ck
2019-04-30 · TA获得超过3976个赞
知道大有可为答主
回答量:6579
采纳率:78%
帮助的人:271万
展开全部
x^n·sinx<x^n·x=x^(n+1)
∫(-a,a)x^n·sinxdx
=2∫(0,a)x^n·sinxdx
<2∫(-0,a)x^(n+1)dx
=2[x^(n+2)/(n+2)]|(0,a)
<2[x^(n+2)/(n+2)]|(0,1)
=2/(n+2)
上式当n→∞时趋向于0
根据夹逼定理易知原式成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式