这道高数题答案为
3个回答
展开全部
增广矩阵 (A,b) =
[1 1 0 0 5]
[2 1 1 2 1]
[5 3 2 2 3]
初等行变换为
[1 1 0 0 5]
[0 -1 1 2 -9]
[0 -2 2 2 -22]
初等行变换为
[1 0 1 2 -4]
[0 1 -1 -2 9]
[0 0 0 -2 -4]
初等行变换为
[1 0 1 0 -8]
[0 1 -1 0 13]
[0 0 0 1 2]
r(A, b) = r(A) = 3 < 4, 方程组有无穷多解
方程组同解变形为
x1 = -8 - x3
x2 = 13+x3
x4 = 2
取 x3 = 0, 得 Ax = b 的特解是 (-8, 13, 0, 2)^T
导出组为
x1 = - x3
x2 = x3
x4 = 0
取 x3 = 1, 得 Ax = 0 的基础解系是 (-1, 1, 1, 0)^T,
则通解是 x = k(-1, 1, 1, 0)^T + (-8, 13, 0, 2)^T。
[1 1 0 0 5]
[2 1 1 2 1]
[5 3 2 2 3]
初等行变换为
[1 1 0 0 5]
[0 -1 1 2 -9]
[0 -2 2 2 -22]
初等行变换为
[1 0 1 2 -4]
[0 1 -1 -2 9]
[0 0 0 -2 -4]
初等行变换为
[1 0 1 0 -8]
[0 1 -1 0 13]
[0 0 0 1 2]
r(A, b) = r(A) = 3 < 4, 方程组有无穷多解
方程组同解变形为
x1 = -8 - x3
x2 = 13+x3
x4 = 2
取 x3 = 0, 得 Ax = b 的特解是 (-8, 13, 0, 2)^T
导出组为
x1 = - x3
x2 = x3
x4 = 0
取 x3 = 1, 得 Ax = 0 的基础解系是 (-1, 1, 1, 0)^T,
则通解是 x = k(-1, 1, 1, 0)^T + (-8, 13, 0, 2)^T。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个用定积分的几何意义,结果是4×1/4×π×π²=π³。
结论:√(a²-x²)从-a到a的积分表示由上半圆周y=√(a²-x²)与x轴围成的上半圆的面积,√(a²-x²)从0到a的积分表示的就是四分之一圆的面积。
结论:√(a²-x²)从-a到a的积分表示由上半圆周y=√(a²-x²)与x轴围成的上半圆的面积,√(a²-x²)从0到a的积分表示的就是四分之一圆的面积。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询