展开全部
题目有误。应为 求 lim<x→0>[dF(x)/dx]
设 u = xt, 则 t = u/x, dt = (1/x)du
F(x) = ∫<0, 1>f(xt)dt = ∫<0, x>f(u)(1/x)du = (1/x)∫<0, x>f(u)du
dF(x)/dx = -(1/x^2)∫<0, x>f(u)du + (1/x)f(x)
lim<x→0>[dF(x)/dx] = lim<x→0>[-(1/x^2)∫<0, x>f(u)du + (1/x)f(x)]
= -lim<x→0>∫<0, x>f(u)du/x^2 + A (前者 0/0)
= -lim<x→0>f(x)/(2x) + A = -A/2 + A = A/2
设 u = xt, 则 t = u/x, dt = (1/x)du
F(x) = ∫<0, 1>f(xt)dt = ∫<0, x>f(u)(1/x)du = (1/x)∫<0, x>f(u)du
dF(x)/dx = -(1/x^2)∫<0, x>f(u)du + (1/x)f(x)
lim<x→0>[dF(x)/dx] = lim<x→0>[-(1/x^2)∫<0, x>f(u)du + (1/x)f(x)]
= -lim<x→0>∫<0, x>f(u)du/x^2 + A (前者 0/0)
= -lim<x→0>f(x)/(2x) + A = -A/2 + A = A/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
判断下列函数的奇偶性:
(1)f(x)=x+1x;
(2)f(x)=2-|x|;
(3)f(x)=3xx2+3;
(4)f(x)=xx−1.
(1)f(x)=x+1x;
(2)f(x)=2-|x|;
(3)f(x)=3xx2+3;
(4)f(x)=xx−1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询