求大神来解答高数题目

 我来答
匿名用户
2020-05-09
展开全部
  1. f(x) = ln(a+x) , a > 0
    f'(x) = 1/(a+x) = (1/a)/(1+x/a) = (1/a)∑<n=0,∞>(-1)^内n(x/a)^n
    = ∑<n=0,∞>[(-1)^n/a^(n+1)]x^n
    f(x) = ∫<0, x>f'(t)dt + f(0)
    = lna + ∑<n=0,∞>[(-1)^n/a^(n+1)]x^(n+1)/(n+1)
    收敛域 -1 < x/a < 1, -a < x < a。
    2. g(x) = (1/2)[e^x-e^(-x)]
    = (1/2)[∑<n=0,∞>x^n/n!容 - ∑<n=0,∞>(-x)^n/n!]
    = x/1! + x^3/3! + x^5/5! + ...... + x^(2k+1)/(2k+1)! + ......
    = ∑<n=0,∞>x^(2n+1)/(2n+1)!,
    收敛域: -∞ < x < +∞

    明白了吗?不明白找楼下给你解答

sjh5551
高粉答主

2020-05-09 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8149万
展开全部
1. f(x) = ln(a+x) , a > 0
f'(x) = 1/(a+x) = (1/a)/(1+x/a) = (1/a)∑<n=0,∞>(-1)^n(x/a)^n
= ∑<n=0,∞>[(-1)^n/a^(n+1)]x^n
f(x) = ∫<0, x>f'(t)dt + f(0)
= lna + ∑<n=0,∞>[(-1)^n/a^(n+1)]x^(n+1)/(n+1)
收敛域 -1 < x/a < 1, -a < x < a。
2. g(x) = (1/2)[e^x-e^(-x)]
= (1/2)[∑<n=0,∞>x^n/n! - ∑<n=0,∞>(-x)^n/n!]
= x/1! + x^3/3! + x^5/5! + ...... + x^(2k+1)/(2k+1)! + ......
= ∑<n=0,∞>x^(2n+1)/(2n+1)!,
收敛域: -∞ < x < +∞
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式