谁知道关于八年级数学下册的内容??? 10

我是八年级学生,10.26要参加数学竞赛.老师说有关于八年级下册的内容.请问,八年级下有哪些内容?(越详细越好^-^)谢谢!北师大版的!!!... 我是八年级学生,10.26要参加数学竞赛.老师说有关于八年级下册的内容.
请问,八年级下有哪些内容?(越详细越好^-^)
谢谢!
北师大版的!!!
展开
 我来答
askl__123
2006-11-04 · TA获得超过149个赞
知道答主
回答量:118
采纳率:0%
帮助的人:0
展开全部
§2.3 运用公式法

一、教学目标

1. 经历通过整式乘法的平方差、完全平方公式逆向得出公式法分解因式的方法的过程,发展学生的逆向思维。

2. 会用公式法(直接用公式不出两次)分解因式(指数是正整数)。

二、教学重难点

用公式法(直接用公式不出两次)分解因式(指数是正整数)

三、教学过程设计

第一课时

1.创设情景,导出问题

(1) 观察多项式x2-25,9x2-y2,它们有什么共同特征?

(这是对平方差公式的再认识,通过整式乘法的逆变形得到分解因式的方法,让学生进一步感受到整式乘法与分解因式的互逆关系。)

(2) 将它们分别写成两个因式的乘积,说明你的理由,并与同伴交流。

(让学生充分交流,加深对这种方法的理解。)

2.探索交流,概括概念

讨论:

(1)多项式的各项都能写成平方的形式。如x2-25中:x2本身是平方的形式,25=52也是平方的形式;9x2-y2也是如此。

(2)逆用乘法公式(a+b)(a-b)=a2-b2,

可知x2-25= x2-52=(x+5)(x-5),9x2-y2=(3x)2-y2=(3x+y)(3x-y).

所以我们可以借助乘法公式(a+b)(a-b)=a2-b2的逆过程得到乘法公式a2-b2= (a+b)(a-b)

3.巩固应用,拓展研究

例1 把下列各式分解因式:

(直接利用平方差公式分解因式,让学生体会公式中的a,b在此例中分别是什么)

提问:a2-b2= (a+b)(a-b) 中a,b都表示单项式吗?它们可以是多项式吗?

例2 把下列各式分解因式:

(1) 9(m+n)2-(m-n)2; (2) 2x3-8x;

解 (1)9(m+n)2-(m-n)2=4(2m+n)(m+2n)

(进一步让学生理解平方差公式中的字母a,b不仅可以表示数,而且可以表示其他代数式。)

(2)2x3-8x=2x(x2-4)=2x(x2-2x)=2x(x+2)(x-2)

(引导学生体会多项式中若含有公因式,就要先提公因式,然后进一步分解,直至不能再分解为止。)

4.应用加强,课内深化

1 把下列各式分解因式:

(此题改编自励耘精品系列丛书《课时导航》北师大版八年级(下)P22第8题)

2 如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分拼成一个矩形,通过计算两个阴影部分的面积,可以得到一个矩形,通过计算两个阴影部分的面积,可以得到一个分解因式的公式,这个公式是怎样的?

(此题改编自励耘精品系列丛书《课时导航》北师大版八年级(下)P22第8题)

5.练习巩固,促进迁移

(1)把下列各式分解因式

① -(x+y)2+z2 (让学生比较(x+y+z)(z-x-y)与-(x+y+z)(x+y-z)是否相等)

② 9(a+b)2-4(a-b)2 ③m4-16m4

(2)如图,水压机有四根空心钢立柱.每根的高h都是18米,外径D为1米,内径d为0.4米,每立方米钢的重量为7.8吨.求四根立柱的总重量.(π取3.14,结果保留两个有效数字).

(此题改编自励耘精品系列丛书《初中期末复习精讲精练》北师大版八年级(下)P12第20题)

解:设四根立柱总重量为w吨,则

=7.8π(D+d)(D-d)h

=7.8×3.14×1.4×0.6×18=3.7×102(吨).

答:四根立柱总重量约3.7×102吨.

6.回顾联系,形成结构

想一想:怎样通过整式乘法的平方差公式逆向用法来分解因式,分解时应注意什么?

(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)

7.课外作业与拓展

参见励耘精品系列丛书《课时导航》北师大版八年级(下)P21-P23

第二课时

1.创设情景,导出问题

把乘法公式

(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2,反过来,就得到

a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2

上面这个变化过程是分解因式吗?说明你的理由。

2.探索交流,解决问题

答案:a2±2ab+b2=(a±b)2是分解因式。因为(a+b)2是因式的乘积的形式,(a-b)2也是因式的乘积的形式。

形如a2+2ab+b2,a2-2ab+b2的式子称为完全平方式。

由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来吧某些多项式分解因式,这种分解因式的方法叫做运用公式法。

3.练习巩固,促进迁移

1把下列各式分解因式:

(1) x2+14x+49; (2) (m+m)2-6(m+n)+9

(3) 3ax2+6axy+3ay2; (4)-x2-4y2+4xy

答案:

(1) x2+14x+49= x2+2×7x+72=(x+7)2

(2) (m+m)2-6(m+n)+9=[(m+n)-3]2=(m+n-3)2

(3) 3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2

(4) -x2-4y2+4xy=-(x-2y)2

(引导学生对照完全平方公式,确定公式中的a ,b在此例中分别是什么。)

2把下列各式分解因式:

(引导学生进一步体会若有公因式要先提公因式,然后在进一步分解。)

4. 课内深化,提升能力

(1)若16x2+24xy+ny2是一个完全平方式,求n的值。

(此题改编自励耘精品系列丛书《课时导航》北师大版八年级(下)P23第6题)

(2)求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。

证明一:原式=(x2+5x+4)(x2+5x+6)+1

=(x2+5x)2+10(x2+5x)+25

=(x2+5x+5)2 ∴原命题成立

证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

令a=x2+5x+4,则x2+5x+6=a+2

原式=a(a+2)+1=(a+1)2

即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

证明三:原式=(x2+5x+4)(x2+5x+6)+1


原式=(x2+5x+5-1)(x2+5x+5+1)+1

=(m-1)(m+1)+1=m2=(x2+5x+5)2

(3)已知a,b,c是△ABC的三条边,且满足a2+b2+c2-ab-bc-ca=0试判断△ABC的形状。

(此题改编自励耘精品系列丛书《初中期末复习精讲精练》北师大版八年级(下)P10第3题)

答案:∵a2+b2+c2-ab-bc-ca=0 ∴2a2+2b2+2c2-2ab-2bc-2ac=0

即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0 ∴(a-b) 2+(b-c) 2+(a-c) 2=0

∵(a-b) 2≥0,(b-c) 2≥0,(a-c) 2≥0 ∴a-b=0,b-c=0,a-c=0

∴a=b,b=c,a=c

∴这个三角形是等边三角形.

(4)设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值?

答案:当x+2z=3y时,x2-9y2+4z2+4xz的值为定值0。

(5)分解因式:

(6)分解因式:

(5、6题改编自励耘精品系列丛书《无敌中考》P5例2)

5.回顾联系,形成结构

想一想:怎样通过整式乘法的平方差公式逆向用法来分解因式,分解时应注意什么?

(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)

6.课外作业与拓展

参见励耘精品系列丛书《课时导航》北师大版八年级(下)P23-P24
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式