1个回答
展开全部
设边数为E
首先,有向连通的一个必要条件是图的无向底图连通,这意味着E >= n-1
其次,证明E > n-1.因当E=n-1时,无向底图为树,任取两顶点s,t,从s到t有且只有一条无向路径,若有向路径s->t连通,则有向路径t->s必不存在。得证
再次,证明E可以=n。设n个顶点v1,v2,...vn,顺次连接有向边v1v2,v2v3...vn-1vn,vnv1,这个环是有向连通的。
因此最少有n条边。
首先,有向连通的一个必要条件是图的无向底图连通,这意味着E >= n-1
其次,证明E > n-1.因当E=n-1时,无向底图为树,任取两顶点s,t,从s到t有且只有一条无向路径,若有向路径s->t连通,则有向路径t->s必不存在。得证
再次,证明E可以=n。设n个顶点v1,v2,...vn,顺次连接有向边v1v2,v2v3...vn-1vn,vnv1,这个环是有向连通的。
因此最少有n条边。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询