判断非齐次线性方程组x1-x2-x3+x4=0,x1-2x2-x3+3x4=-1,x1+x2-x3-3x4=2,是否有解,如果有,求通解
展开全部
2;2:
x1-
x2
-
x3
+
x4
=
0
----(6)
2*x3
-
4*x4
=
1
----(7)
以x4,和x2为自由变量,
2*x4+1/,,代入(2)(3)得:
2*x3
-
4*x4
=
1
----(4)
2*x3
-
4*x4
=
1
----(5)
由此可以看出:
(x2+x4
+1/,
x2解:
设
x1-
x2
=
y,原方程组化为:y
=
x3-x4,4元方程组只有两个约束条件,得到:
x3
=2*x4
+1/2;
x1
=
x2+x4
+1/2;
因此,方程组通解为:
y
-
x3
+
x4
=
0
----(1)
y
+
x3
-
3x4
=
1
----(2)
2y
-4x3
+6x4
=-1
----(3)
由(1)得
x1-
x2
-
x3
+
x4
=
0
----(6)
2*x3
-
4*x4
=
1
----(7)
以x4,和x2为自由变量,
2*x4+1/,,代入(2)(3)得:
2*x3
-
4*x4
=
1
----(4)
2*x3
-
4*x4
=
1
----(5)
由此可以看出:
(x2+x4
+1/,
x2解:
设
x1-
x2
=
y,原方程组化为:y
=
x3-x4,4元方程组只有两个约束条件,得到:
x3
=2*x4
+1/2;
x1
=
x2+x4
+1/2;
因此,方程组通解为:
y
-
x3
+
x4
=
0
----(1)
y
+
x3
-
3x4
=
1
----(2)
2y
-4x3
+6x4
=-1
----(3)
由(1)得
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询