如果a b c都是正数,求证bc/a+ca/b+ab/c>=a+b+c

zxqsyr
2010-03-17 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.6亿
展开全部
bc/a+ca/b+ab/c>=a+b+c
=(b^2c^2+c^2a^2+a^2b^2)/abc
=2(b^2c^2+a^2c^2+a^2b^2)/2abc
=[a^2(b^2+c^2)+b^2(a^2+c^2)+c^2(a^2+b^2)]/2abc
因为
a^2+b^2>=2ab,
b^2+c^2>=2bc,
a^2+c^2>=2ac
所以
原式=[2abc(a+b+c)]/2abc
=a+b+c当且仅当a=b=c时等号成立
>=a+b+c

所以:bc/a+ca/b+ab/c>=a+b+c
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式