线性代数中的A*是什么怎么求

 我来答
轮看殊O
高粉答主

2019-05-19 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:744万
展开全部

线性代数中 ||a|| 是指向量a的长度

||a|| = √(a,a) = √a^Ta

其中 (a,a) 是a与a的内积,是a的各分量的平方之和

如a=(X1,X2,X3),则||a||=√X1^2+X2^2+X3^3

扩展资料

常用矩阵范数:

(1)行和范数:就是对矩阵每行绝对值求和,然后在取最大值就定义为矩阵的行和范数。

(2)列和范数:就是对矩阵每列绝对值求和,然后在取最大值就定义为矩阵的列和范数。

(3)谱范数:求解矩阵A与自身转置乘积所得矩阵的模最大特征值,记这个特征值的模叫做矩阵的谱半径,也就是此矩阵的谱范数,注意这里做的乘积是必要的,就是方阵化,因为我们一般的矩阵不一定是方阵并不一定有特征值。

召奕萧运凡
2020-06-03 · TA获得超过3831个赞
知道大有可为答主
回答量:3197
采纳率:32%
帮助的人:168万
展开全部
两个方法
1.用定义 A* = (Aji)
2.当A可逆时,A* = |A|A^-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式