高一数学题,急要答案

已知数列{an}的各项均为正数,且6Sn=(an+1)(an+2),n∈N+(1)求证{an}是等差数列(2)求{an}的通项公式... 已知数列{an}的各项均为正数,且6Sn=(an+1)(an+2),n∈N+
(1)求证{an}是等差数列 (2)求{an}的通项公式
展开
pass_op
2010-03-18 · TA获得超过1万个赞
知道大有可为答主
回答量:2804
采纳率:100%
帮助的人:4231万
展开全部
(1)
6Sn=(an+1)(an+2)
6S(n-1)=(a(n-1)+1)(a(n-1)+2)
两式想减得
6an=an^2+3an+2-a(n-1)^2-3a(n-1)-2
an^2-3an-a(n-1)^2-3a(n-1)=0
(an+a(n-1))(an-a(n-1))-3(an+a(n-1))=0
(an+a(n-1))(an-a(n-1)-3)=0
因为{an}各项均为正数,所以an+a(n-1)>0
所以an-a(n-1)-3=0
所以an-a(n-1)=3
所以{an}是等差数列

(2)
{an}公差为3,
6a1=(a1+1)(a1+2)=a1^2+3a1+2
a1^2-3a1+2=0
(a1-1)(a1-2)=0
a1=1或a1=2
所以an=1+3(n-1)=3n-2或an=2+3(n-1)=3n-1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式