一组对边平行,一组对角相等能判定四边形是平行四边形吗
2个回答
展开全部
1、这句话是正确的。
2、平行四边形的判定。
(1)两组对边分别相等的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;
(3)两组对边分别平行的四边形是平行四边形;
(4)两条对角线互相平分的四边形是平行四边形;
(5)
两组对角分别相等的四边形是平行四边形;
3、平行四边形的基本性质。
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(
3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(平行线间的高距离处处相等)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形).
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。
2、平行四边形的判定。
(1)两组对边分别相等的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;
(3)两组对边分别平行的四边形是平行四边形;
(4)两条对角线互相平分的四边形是平行四边形;
(5)
两组对角分别相等的四边形是平行四边形;
3、平行四边形的基本性质。
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(
3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(平行线间的高距离处处相等)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形).
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询