学习数据挖掘需要哪方面的基础知识啊?

我读研一,是通信学院信号与信息处理专业的,但是导师安排我的论文方向是数据挖掘,我没有太多计算机方面的基础知识。所以不知道该从何学起,那么学习数据挖掘需要有哪方面的基础知识... 我读研一,是通信学院信号与信息处理专业的,但是导师安排我的论文方向是数据挖掘,我没有太多计算机方面的基础知识。所以不知道该从何学起,那么学习数据挖掘需要有哪方面的基础知识啊?我主要是研究算法。如果可以的话,我选择Java做算法的工具。是不是还需要学SQL啊? 展开
 我来答
中国人看好中国
2015-03-09 · TA获得超过3354个赞
知道小有建树答主
回答量:1197
采纳率:33%
帮助的人:686万
展开全部

入门推荐你看《机器学习实战》,不需要你跑去学习算法和数据结构,不需要解析几何的知识,但是数理统计的基础你必须要有,期望、方差、常用的几种概率分布,尤其注意一下条件概率,因为朴素贝叶斯模型你一定要懂,线性代数至少你要明白矩阵乘法、行列式计算,再就是微积分知识,不然你看不懂所有基于梯度下降法的文献,行业内用的比较多的是c++,java和python,推荐你用python,很多模型不需要你造轮子,python有相关的第三方模块,很方便。

数据挖掘涉及的内容比较泛,机器学习、数据挖掘、人工智能,但实际上这些知识大多是相通的,机器学习实战这本书是我看的启蒙书里很好的一本了,该有的都有,难度较小,有理论有实践,可以较快的对各种知识有个大概的了解,但是想要长期在这个行业发展,还需要学习更多的知识,比如说提到回归模型,你不仅仅要知道最小二乘法,你还要想到怎么进行数据清洗、哪些数据需要清洗,怎么规范数据,数据是否过多,要不要进行归约和降维,采用哪种回归模型,精确度大致要达到什么水平,要不要考虑过拟合和欠拟合,要不要进行交叉验证,几折交叉验证效果好,如果回归模型不适用,有哪些备选方案。比如说决策树模型,书上简单的讲了个if-then就完了,按照什么规则生成树,怎么分层,要不要剪枝,最终的效果怎么样,造成误差的原因是模型太复杂还是太简单,怎么综合其他模型对决策树进行改进,数据的聚类方法用k均值还是DBSCAN,需要对数据进行分类的时候要考虑数据量大不大,SVM还是神经网络,数据量计算机吃不吃得消,一次吃不消该怎么做,等你对这些有了大致的了解之后,好好看看《统计学习方法》这本书,深入地了解一下理论部分,看一看核心部分的数学模型,看一看如何算法实现,着重理解一下拉格朗日微分法和拉格朗日对偶,解决等式约束和不等式约束很有用,这个也是使用智能算法尝试解决NP完全问题的一个结合点。

除了看书以外,其他时间全部用在学习编程上,python常用的numpy、matplotlib、scipy、sklearn、nltk这些包你都要大致了解怎么用,推荐你看看图灵程序设计丛书里的《python学习手册》《python自然语言处理》《python科学计算》,至少要知道怎么定义类、方法、属性,常用模块里有哪些好用的方法,常见的异常怎么排除,其他的在有时间的时候随用随学,至于算法和数据结构,有时间的话看看《算法导论》,肯定有所收获。

至于说书单就上豆瓣搜一搜,评分高的一般都比较靠谱,英文版的也比较靠谱

dtminer
2010-03-21 · TA获得超过158个赞
知道小有建树答主
回答量:202
采纳率:0%
帮助的人:146万
展开全部
数据挖掘概念与技术、数据挖掘原理与应用-sql server 2005数据库
等应用方面的书籍,算法的话,主要要看你选用的软件,各大数据挖掘软件的算法都不是很相同。您可以用您的知识改进,或切入到其他应用软件中。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
坚持到底PCS
2010-03-27
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
最好把你的数学知识先补一下,这个对数学要求还是蛮高,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2010-03-20 · TA获得超过939个赞
知道小有建树答主
回答量:413
采纳率:0%
帮助的人:584万
展开全部
参见小蚊子的博文《沈浩老师谈如何学好数据挖掘》,写得很好。

参考资料: http://blog.sina.com.cn/s/blog_49f78a4b0100hskn.html

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
婷婷要考研
2010-03-19
知道答主
回答量:14
采纳率:0%
帮助的人:0
展开全部
XML 流模式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式