在三角形ABC中,COSA=-5/13,COSB=3/5 1:求SINC的值
2个回答
展开全部
sin (C)
=sin (π-A-B)
=sin (A+B)
=sin (arccos (-5/13)+arccos (3/5) )
=sin (arccos (-5/13) ) cos (arccos (3/搏饥5) )+cos (arccos (-5/13) ) sin (arccos (3/5) )
=3/5 √(1-5^2/(13)^2 )-5/13 √(1-3^2/瞎慎5^2 )
=3/5⋅基神返12/13-5/13⋅4/5
=16/65
=sin (π-A-B)
=sin (A+B)
=sin (arccos (-5/13)+arccos (3/5) )
=sin (arccos (-5/13) ) cos (arccos (3/搏饥5) )+cos (arccos (-5/13) ) sin (arccos (3/5) )
=3/5 √(1-5^2/(13)^2 )-5/13 √(1-3^2/瞎慎5^2 )
=3/5⋅基神返12/13-5/13⋅4/5
=16/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询