计算不定积分:∫1/√(1+sinx)dx

 我来答
答仪路和通
2019-11-20 · TA获得超过1160个赞
知道小有建树答主
回答量:1746
采纳率:66%
帮助的人:8.3万
展开全部
答:
原积分
=∫1/√(1+cos(x-π/2)) dx
=∫1/√(1+2cos(x/2-π/4)^2-1) dx
=∫1/√(2cos(x/2-π/4)^2) dx
=1/√2 ∫1/cos(x/2-π/4) dx
=1/√2 ∫2sec(x/2-π/4) d(x/2-π/4)
=√2 ln|tan(x/2-π/4)+sec(x/2-π/4)| + C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式