证明:(f(x)h(x),g(x)h(x))=(f(x),g(x))h(x)
1个回答
展开全部
设(f(x),g(x))=q(x)
则f=q*f1,g=q*g1,且(f1,g1)=1
则存在u(x),v(x),使得:
f1*u+g1*v=1
同时乘以q(x)h(x)
则f1*q*h*u+g1*q*h*v=q*h
fh*u+gh*v=q*h
又有:q*h | f*h,q*h | g*h
所以:(f(x)h(x),g(x)h(x))=(f(x),g(x))h(x)
则f=q*f1,g=q*g1,且(f1,g1)=1
则存在u(x),v(x),使得:
f1*u+g1*v=1
同时乘以q(x)h(x)
则f1*q*h*u+g1*q*h*v=q*h
fh*u+gh*v=q*h
又有:q*h | f*h,q*h | g*h
所以:(f(x)h(x),g(x)h(x))=(f(x),g(x))h(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |