f(x)在x=x0处二阶可导[不是一阶可导] 能推出f(x)在x=x0的邻域内连续吗?

f(x)在x0处二阶可导→f(x)在x0处邻域内一阶可导→f(x)在x0处邻域内连续请问我的思路对吗?... f(x)在x0处二阶可导
→f(x)在x0处邻域内一阶可导
→f(x)在x0处邻域内连续
请问我的思路对吗?
展开
 我来答
匿名用户
2020-12-05
展开全部

1.当f(x)在x0处二阶可导时,可以推出f(x)在x0处连续,理由见上图。

2.f(x)在x0处二阶可导时,可以推出f’(x)在x0处存在。再利用可导则一定连续定理,可得出函数连续。

3、当f(x)在x0处二阶可导时,可以推出f(x)在x0处连续;当f(x)在x0处一阶可导时,也可以推出f(x)在x0处连续。

4、对于f(x)在x0处二阶可导这个条件强。当f(x)在x0处二阶可导时,可以推出f(x)在x0处一阶可导。反之不对。

5、你推的思路是对的。

具体的当f(x)在x0处二阶可导时,可以推出f(x)在x0处连续,详细的说明见上。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式