高数求微分方程(dy/dx)+y=e^2x 的通解 过程详细点

 我来答
桂晋越痴凝
2019-12-15 · TA获得超过1216个赞
知道小有建树答主
回答量:1827
采纳率:100%
帮助的人:8.8万
展开全部
这是一阶线性微分方程 (dy/dx)+p(x)y=q(x),采用积分因子的方法.
(dy/dx)+y=e^(2x)
两边乘以积分因子 e^(∫dx)=e^x
得 (e^x)(dy/dx)+(e^x)y=e^(3x)
整理成
d[(e^x)y]/dx=e^(3x)
所以
d[(e^x)y]=[e^(3x)]dx
两边积分得
(e^x)y=(1/3)[e^(3x)]+C
所以 y=(1/3)[e^(2x)]+C[e^(-x)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式