1个回答
2013-11-03 · 知道合伙人软件行家
关注
展开全部
解:
(1)证明:∵AD⊥BC(已知),∴∠BDA=∠ADC=90°(垂直定义),
∴∠1+∠2=90°(搭拆好直角三角形两锐角互余).
在Rt△BDF和Rt△ADC中,
∴Rt△BDF≌Rt△ADC(H.L).
∴∠2=∠C(全等三角形的对应角相等)御戚.
∵∠1+∠2=90°(已证知铅),所以∠1+∠C=90°.
∵∠1+∠C+∠BEC=180°(三角形内角和等于180°),
∴∠BEC=90°.
∴BE⊥AC(垂直定义);
(1)证明:∵AD⊥BC(已知),∴∠BDA=∠ADC=90°(垂直定义),
∴∠1+∠2=90°(搭拆好直角三角形两锐角互余).
在Rt△BDF和Rt△ADC中,
∴Rt△BDF≌Rt△ADC(H.L).
∴∠2=∠C(全等三角形的对应角相等)御戚.
∵∠1+∠2=90°(已证知铅),所以∠1+∠C=90°.
∵∠1+∠C+∠BEC=180°(三角形内角和等于180°),
∴∠BEC=90°.
∴BE⊥AC(垂直定义);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询