向量的计算公式。
向量AB加(减、乘)向量BC的公式。向量AB(x2-x1,y2-y1)、向量BC(x3-x2,y3-y2)...
向量AB加(减、乘)向量BC的公式。向量AB(x2-x1,y2-y1)、向量BC(x3-x2,y3-y2)
展开
5个回答
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
2013-11-21
展开全部
向量加减计算公式是用坐标计算:若A(X1,Y1)和B(X2,Y2),则A+B=(X1+X2,Y1+Y2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-21
展开全部
直接加减
AB+BC=(x3-x1,y3-y1)
AB+BC=(x3-x1,y3-y1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
向量的加法满足平行四边形法则和三角形法则.
向量的加法OB+OA=OC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
向量的减法
AB-AC=CB.即“共同起点,指向被
向量的减法减”
a=(x,y)b=(x',y')
则a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.
当λ>0时,λa与a同方向;
向量的数乘
当λ<0时,λa与a反方向;
向量的数乘当λ=0时,λa=0,方向任意.
当a=0时,对于任意实数λ,都有λa=0.
注:按定义知,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①
如果实数λ≠0且λa=λb,那么a=b.②
如果a≠0且λa=μa,那么λ=μ.
4、向量的数量积
定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.
向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律
a·b=b·a(交换律);
(λa)·b=λ(a·b)(关于数乘法的结合律);
(a+b)·c=a·c+b·c(分配律);
向量的数量积的性质
a·a=|a|的平方.
a⊥b
〈=〉a·b=0.
|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα|
因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2、向量的数量积不满足消去律,即:由
a·b=a·c
(a≠0),推不出
b=c.
3、|a·b|≠|a|·|b|
4、由
|a|=|b|
,推不出
a=b或a=-b.
5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0.
a垂直b〈=〉a×b=|a||b|.
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的.
向量的加法OB+OA=OC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
向量的减法
AB-AC=CB.即“共同起点,指向被
向量的减法减”
a=(x,y)b=(x',y')
则a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.
当λ>0时,λa与a同方向;
向量的数乘
当λ<0时,λa与a反方向;
向量的数乘当λ=0时,λa=0,方向任意.
当a=0时,对于任意实数λ,都有λa=0.
注:按定义知,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍.
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①
如果实数λ≠0且λa=λb,那么a=b.②
如果a≠0且λa=μa,那么λ=μ.
4、向量的数量积
定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.
向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律
a·b=b·a(交换律);
(λa)·b=λ(a·b)(关于数乘法的结合律);
(a+b)·c=a·c+b·c(分配律);
向量的数量积的性质
a·a=|a|的平方.
a⊥b
〈=〉a·b=0.
|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα|
因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2、向量的数量积不满足消去律,即:由
a·b=a·c
(a≠0),推不出
b=c.
3、|a·b|≠|a|·|b|
4、由
|a|=|b|
,推不出
a=b或a=-b.
5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0.
a垂直b〈=〉a×b=|a||b|.
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-11-21
展开全部
加法
1、三角形法则 2、平行四边形法则
设a向量=(x1,y1),b向量=(x2,y2),则:a向量+b向量=(x1+x2,y1+y2)
减法
三角形法则:
设a向量=(x1+y1),b向量=(x2,y2),则:a向量+b向量=(x1-x2,y1-y2)
a向量*b向量=b向量*a向量
若向量a=(x,y) 向量b=(m,n)
1)a·b=xm+yn
2)a+b=(x+m,y+n)
1、三角形法则 2、平行四边形法则
设a向量=(x1,y1),b向量=(x2,y2),则:a向量+b向量=(x1+x2,y1+y2)
减法
三角形法则:
设a向量=(x1+y1),b向量=(x2,y2),则:a向量+b向量=(x1-x2,y1-y2)
a向量*b向量=b向量*a向量
若向量a=(x,y) 向量b=(m,n)
1)a·b=xm+yn
2)a+b=(x+m,y+n)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询