高一数学求正弦函数单调性
(1)
y=sinx,与y= - sinx的单调性恰好是相反的;
y= -sinx可拆成:
y= -t (减函数)
t=sinx
由复合函数的同增异减得:当t=sinx是增函数时,复合函数是减函数,当t=sinx是减函数时,复合函数是增函数,
因此:
y=1-sinx的单调增区间是:[-π/2+2kπ.π/2+2kπ]
y=1-sinx的单调减区间是:[π/2+2kπ.3π/2+2kπ]
...................................................................................................
(2).
y=sin(x/2)可拆成:
y=sint
t=x/2,因为函数t=x/2是增函数,所以,函数y=sin(x/2)与函数y=sint的单调性相同;
而sint的单调增区间是;
-π/2+2kπ≤t≤π/2+2kπ
-π/2+2kπ≤x/2≤π/2+2kπ,其直接效果可一步到位成:把x/2直接代入到标准正弦函数的单调增区间中去解出x;
解由-π/2+2kπ≤x/2≤π/2+2kπ得:
-π+4kπ≤x≤π+4kπ
单调增区间是:[-π+4kπ ,π+4kπ]
由π/2+2kπ≤x/2≤3π/2+2kπ得:
π+4kπ≤x≤3π+4kπ
单调减区间是:[π+4kπ ,3π+4kπ]
.....................................................................................................
(3)
由-π/2+2kπ≤x+π/3≤π/2+2kπ得:
-5π/6+2kπ≤x≤π/6+2kπ
单调增区间是:[-5π/6+2kπ ,π/6+2kπ]
由π/2+2kπ≤x+π/3≤3π/2+2kπ得:
π/6+2kπ≤x≤7π/6+2kπ
单调减区间是:[π/6+2kπ ,7π/6+2kπ]
..............................................................................................
(4)
由-π/2+2kπ≤2x+π/4≤π/2+2kπ得:
-3π/4+2kπ≤2x≤π/4+2kπ
-3π/8+kπ≤2x≤π/8+kπ
单调增区间是:[-3π/8+kπ ,π/8+kπ]
由π/2+2kπ≤2x+π/4≤3π/2+2kπ得:
π/4+2kπ≤2x≤5π/4+2kπ
π/8+kπ≤x≤5π/8+kπ
单调减区间是:[π/8+kπ,5π/8+kπ]
2024-10-28 广告