已知函数f(x)=Inx-a/x,g(x)=f(x)+ax-6Inx,其中a∈R(1)讨论f(x)的单调性(2)若g(x)在其定

已知函数f(x)=Inx-a/x,g(x)=f(x)+ax-6Inx,其中a∈R(1)讨论f(x)的单调性(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3... 已知函数f(x)=Inx-a/x,g(x)=f(x)+ax-6Inx,其中a∈R(1)讨论f(x)的单调性(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数f(x)=x∧2-mx+4,当a=2时,若存在x1∈(0,1)任给x2∈【1,2】,总有g(x1)≥h(x2)成立,求实数m的取值范围。。。表示很急!!!!若为正解,追加悬赏!! 展开
百度网友e743c99
2014-04-19 · TA获得超过3371个赞
知道大有可为答主
回答量:5017
采纳率:64%
帮助的人:2271万
展开全部

更多追问追答
追问
不好意思,是h(x)=x∧2-mx+4
追答

sjh5551
高粉答主

2014-04-19 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8204万
展开全部
f(x)=lnx-a/x, 定义域 x>0. f'(x)=1/x+a/x^2=(a+x)/x^2, 驻点 x=-a.
(1) 当 a≥0 时, f'(x)>0, 函数f(x)单调增加。
当 a<0 时,若 x>-a, f'(x)>0, 函数f(x)单调增加; 若 0<x<-a, f'(x)<0, 函数f(x)单调减少。
(2) g(x)=f(x)+ax-6lnx=a(x-1/x)-5lnx 为增函数, 则 g'(x)=a(1+1/x^2)-5/x=(ax^2-5x+a)/x^2>0,
即 ax^2-5x+a>0, 则 a>0 且 ⊿=25-4a^2<0, 联立解得 a>5/2.
(3) 函数 h(x)未定义,请核题!
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式