1个回答
展开全部
解:∵DE垂直平分AB,
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAC=∠ABE=45°,
又∵AB=AC,
∴∠ABC=1/2(180°-∠BAC)=1/2(180°-45°)=67.5°,
∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,
∵AB=AC,AF⊥BC,
∴BF=CF,
∴BF=EF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.
故答案为:45.
有解析,望采纳,谢谢
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAC=∠ABE=45°,
又∵AB=AC,
∴∠ABC=1/2(180°-∠BAC)=1/2(180°-45°)=67.5°,
∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,
∵AB=AC,AF⊥BC,
∴BF=CF,
∴BF=EF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.
故答案为:45.
有解析,望采纳,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询