已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点 (1)如图,E,F分

别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形。(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直... 别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形。
(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论。
展开
 我来答
tony罗腾
2013-11-18 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293881
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
1)证明:连接AD
∵AB=AC,∠BAC=90°,D为BC的中点,
∴AD⊥BC,BD=AD.
∴∠B=∠DAC=45°
又BE=AF,
∴△BDE≌△ADF(SAS).
∴ED=FD,∠BDE=∠ADF.
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.
∴△DEF为等腰直角三角形.

(2)解:△DEF为等腰直角三角形.
证明:若E,F分别是AB,CA延长线上的点,如图所示:
连接AD,
∵AB=AC,
∴△ABC等腰三角形,
∵∠BAC=90°,D为BC的中点,
∴AD=BD,AD⊥BC(三线合一),
∴∠DAC=∠ABD=45°.
∴∠DAF=∠DBE=135°.
又AF=BE,
∴△DAF≌△DBE(SAS).
∴FD=ED,∠FDA=∠EDB.
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.
∴△DEF仍为等腰直角三角形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式