如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点。
(1)求证:四边形EGFH是菱形。(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积(1)已经解决了跪求(2)的解法!!!...
(1)求证:四边形EGFH是菱形。
(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积
(1)已经解决了 跪求(2)的解法!!! 展开
(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积
(1)已经解决了 跪求(2)的解法!!! 展开
1个回答
展开全部
(1)
证明:
∵E是BD的中点,G是AD的中点
∴EG是△ABD的中位线
∴EG//AB,EG=½AB
∵F是AC的中点,H是BC的中点
∴FH是△ABC的中位线
∴FH//AB,FH=½AB
∴EG//FH,EG=FH
∴四边形EGFH是平行四边形
∵E是BD的中点,H是BC的中点
∴EH是△BCD的中位线
∴EH//CD,EH=½CD
∵AB=CD
∴EH=FH
∴四边形EGFH是菱形(邻边相等的平行四边形是菱形)
(2)
∵FH//AB
∴∠FHC=∠ABC
∵EH//CD
∴∠EHB=∠DCB
∴∠FHC+∠EHB=∠ABC+∠DCB=90°
∴∠EHF=90°
则菱形EGFH为正方形
∵EG=½AB=1/2
∴四边形EGFH的面积=EG²=1/4
证明:
∵E是BD的中点,G是AD的中点
∴EG是△ABD的中位线
∴EG//AB,EG=½AB
∵F是AC的中点,H是BC的中点
∴FH是△ABC的中位线
∴FH//AB,FH=½AB
∴EG//FH,EG=FH
∴四边形EGFH是平行四边形
∵E是BD的中点,H是BC的中点
∴EH是△BCD的中位线
∴EH//CD,EH=½CD
∵AB=CD
∴EH=FH
∴四边形EGFH是菱形(邻边相等的平行四边形是菱形)
(2)
∵FH//AB
∴∠FHC=∠ABC
∵EH//CD
∴∠EHB=∠DCB
∴∠FHC+∠EHB=∠ABC+∠DCB=90°
∴∠EHF=90°
则菱形EGFH为正方形
∵EG=½AB=1/2
∴四边形EGFH的面积=EG²=1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询