二次根号加减 10
(1)3根号48-9根号三分之一+3根号12(2)根号1又三分之一+根号12-根号3分之1(3)根号80-根号1又五分之四-(根号3又五分之一+五分之四根号45)...
(1)3根号48-9根号三分之一+3根号12
(2)根号1又三分之一+根号12-根号3分之1
(3)根号80-根号1又五分之四-(根号3又五分之一+五分之四根号45) 展开
(2)根号1又三分之一+根号12-根号3分之1
(3)根号80-根号1又五分之四-(根号3又五分之一+五分之四根号45) 展开
1个回答
展开全部
名称定义
[编辑本段]
化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。
同类二次根式与同类项的异同
[编辑本段]
同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。
一. 相同点:
1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。
2. 两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的字母及指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。
二. 不同点:
1. 判断准则不同。
判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。
2. 合并形式不同
“同类二次根式定义”教学的三个梯级
[编辑本段]
“同类二次根式定义”教学的三个梯级为:(1)实例引入同类二次根式定义,举正反例反复理解;(2)定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;(3)定义的拓广,从同类二次根式定义中发现一般同类根式的定义(新教材正文不做要求)。
那个太麻烦
打字不易,如满意,望采纳。
[编辑本段]
化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。
同类二次根式与同类项的异同
[编辑本段]
同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。
一. 相同点:
1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。
2. 两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的字母及指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。
二. 不同点:
1. 判断准则不同。
判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。
2. 合并形式不同
“同类二次根式定义”教学的三个梯级
[编辑本段]
“同类二次根式定义”教学的三个梯级为:(1)实例引入同类二次根式定义,举正反例反复理解;(2)定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;(3)定义的拓广,从同类二次根式定义中发现一般同类根式的定义(新教材正文不做要求)。
那个太麻烦
打字不易,如满意,望采纳。
追问
呃。。你复制的吧。。我要的是那三题的过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询