初中数学问题

快中考了,数学不是一般的烂。求各位大神们拉我一把,比如合并同类项、一元二次方程组等,小弟在谢谢了。(从哪复习走?初中数学已学完。)... 快中考了,数学不是一般的烂。求各位大神们拉我一把,比如合并同类项、一元二次方程组等,小弟在谢谢了。(从哪复习走?初中数学已学完。) 展开
 我来答
潞城lcn
2010-03-27 · TA获得超过451个赞
知道答主
回答量:60
采纳率:0%
帮助的人:0
展开全部
初中数学学习习惯指导及量化表
     叶圣陶先生说:"教育是什么,往单方面讲,只需一句话,就是要培养良好的习惯"。中学生时代是最适宜养成良好学习习惯的时期,这是由学生的生理特点和心理特点所决定的。因此,在学习中,应抓住这个黄金季节,努力培养良好的学习习惯。良好的学习习惯有以下几个方面。一、制定计划的习惯     制定一个切实可行的计划,既有长期打算,又要有短期安排,在落实过程中严格要求自己,不断历练自己的意志。如落实每天的计划,要进行三省:我来干什么?我打算怎么干?我干得怎么样?要求要做到堂堂清,日日清,每周的计划要做到周周清,学期计划也是如此,假期要制定假期学习计划,除了完成老师布置的作业外,自己还要读哪些书,安排哪些学习活动等都要做好安排。对于自己的目标,要有不达目标不罢休的信心,成功一次自我赞赏一次,从而能不断增加学习时间和兴趣。
二、预习的习惯    预习就是为了对所学知识的初步感知,通过预习,查出障碍;它不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。数学预习常用的方法步骤有:    1.要求在晚上用一定时间阅读次日要学的内容,要学会用笔在书上做不同的标记,如:重点内容在文字下面标“△”,有疑问的地方在文字下面画“ ”并在旁边写上“?”等,以便在老师讲课时多留心。 这样上课听讲时就会目标明确,重点突出,同时还可以对照老师的思路检验自己思考问题的方式是否正确,锻炼自己探索数学问题的能力,在探索中对数学知识的内化得到了加强。同时这种学习能力对人的一生是非常重要的。    2.亲自推导公式 数学课程中有大量的公式,有的课本上有推导过程;有的课本上没有推导过程,只是把公式的最初形式写出来,然后说一句,“经推导可得”,就把结果式子写出来了。无论课本上有无推导过程,学生预习的时候应当自己合上书亲自把公式推导一遍;书上有推导过程的,可把自己推导过程和书上的相对照;书上没有推导过程的可在课堂上和老师推导的过程相对照;以便发现自己有没有推导错的地方。 自行推导公式既是自己在独立地分析问题和解决问题,又是在发现自己的知识准备情况。通常,推导不下去或推导出现错误,都是由于自己的知识 准备不够,要么是学过的忘记了,要么是有些内容自己还没有学过,只要设法补上,自己也就进步了。     3.扫除绊脚石     数学知识连续性强,前面的概念不理解,后面的课程无法学下去。预习的时候发现学过的概念有不明白、不清楚的,一定要在课前搞清楚。     4.汇集定理、定律、公式、常数等     数学课程中大量的定理、定律、公式、常数、特定符号等,是学习数学课程的最重要的内容,是需要深刻理解,牢牢记住的。所以,在预习的时候, 无论你做不做预习笔记,都应当把这些内容单独汇集在一起,每抄录一遍, 则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。     5.试做练习     数学课本上的练习题都是为巩固所学的知识而出的。预习中可以试做那些习题。之所以说试做,是因为并不强调要做对,而是用来检验自己预习的效果。预习效果好,一般书后所附的习题是可以做出来的。    以上是课前的“小预习”。预习还有周末或小假期的“中预习”,要求学生用一定时间预习下周教材的内容,初步找出疑难问题,也是对一个数学单元的总体了解,预习还有在寒暑假的“大预习”,通过预习对下学期的教材有大致了解,做到心中有数。
三、认真听"讲"的习惯    新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。数学课的听讲要坚持做到“五到”即耳到、眼到、口到、心到、手到。耳到:在听课的过程中,听老师讲的知识重点和难点,又要听同学回答问题的内容。眼到:把书上知识与老师课堂讲的知识联系起来。
口到:是自己预习时没有掌握的,课堂上新生的疑问,提出来。心到:课堂上要认真思考,注意理解课堂的知识,主动积极。手到:就是在听,看,思的同时,要适当地动手做一些笔记。    同时要善于合作学习,积极参与问题讨论,敢于提出自己的不同见解,对与自己不一致的见解要敢于争论,并不断修正、弥补自己的不足。    换一种角度来说,数学学科良好的课堂学习习惯主要表现为:会思考、会提问、会笔记、会发现。   (1)会思考:会思考就是要求在理解数学各种定义、定理基础上,对于比较类似的概念加以类比、区分。如“半径”和“直径”,“圆心距”和“连心线”等概念。通过区别,类比加深对概念的理解,运用自如,这一系列的活动就是思考。    (2)会提问:发现和寻找思维上的困难、疑惑,并将存在的困难和疑惑,在课堂里向教师发问,这就是提问。“学者须要会疑”“有不知则有知,无不知则无知”。积极提问是课堂学习中获得知识的重要学习习惯。   (3)会笔记:上课做笔记并不是简单地将教师的板书进行抄写,而是要将在听课中得到的知识进行整理,它包括教师的思维方法和本人思考的过程和成果,以及所存在的疑难。语言是思维的载体,做笔记的过程是语言操作过程,也是大脑积极思考的过程,能培养人的思维能力。做笔记还能使听课的注意力更加集中,课堂学习效率更高。只要持之以恒,就能习以为常。   (4)会发现:这里的“发现”指是寻找规律,通过对数学问题的观察、分析、综合、抽象和概括,归纳出一般性结论,使知识达到条理化、系统化。形成由“试算——归纳——猜想——论证”学习模式。还应重视“一题多解”、“一题多变”、“一图多用”,拓展思路,学会和运用“引出问题——形成猜想——演绎结论——知识运用”等科学思维方式,养成发现规律的科学思维习惯。
四、及时复习的习惯    复习是为了扫除障碍,巩固所学知识。每天睡觉前都要反思一下:“今天,我又学到了什么新知识?今天的事情都完成了吗?”。把当天的学习内容在头脑中简要地回顾一遍。回想今天学习的重点和难点是什么。有哪些已经懂了?哪些不懂?哪些还不太清楚?找出学习中的薄弱环节及时予以解决。 一周结束要利用星期天复习本周的学习内容,一月结束要利用星期天复习本月的内容等。要注意积累资料,对自己的作业本、试题、笔记本、纠错本等做好积累,并时常翻阅,随时复习,通过整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。使对所学的新知识由“懂”到“会”,由“活”到“悟”。常用的几中复习方法:   (一)四轮复习法:①通读,进行系统复习;②精读,进行重点复习;③演练,进行解题复习;④回忆,进行检验复习。   (二)综合复习“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成完整的知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固。    (三)快速学习法:拿到教材后,直接根据目录和提示,调动自己已有的知识,猜测性地作“自我讲授”,讲完后才打开书本,进行第一次通读。第一次通读可以检验第一次“自我讲授”的不足之处,谬误所在都会“跃然纸上”,使你体会颇深。然后你就可以用自己的语言编制出一张精炼适用的“目录一览表”,对照它进行第二次“自我讲授”,这次讲授会明显地感到自己比第一次比较准确有条理。接着再通读第二次,这次通读会获得更深的感受。当你进行第三次自我讲授时,你会讲得更完善、更丰富,许多模糊的地方变得清晰起来,最后再来一次通读,可快速浏览,作一系统总结,感到知识都已清楚地反映在大脑之中。经过三到四个回合的“自我讲授—通读、精读、粗读”后,你就能得心应手地掌握所要学习的数学知识。
五、独立完成作业的习惯     作业就是把所学知识进行应用。好的作业习惯应该是当天作业当天完成,先复习课文,再进行作业,不依赖别人独立完成,书写整洁、美观,计算准确,叙述有条理、规范。做作业能专心,不边玩边写,不边吃边写,书写时先想好再下笔;做作业时要仔细审题,分析已知条件、求知条件,挖掘隐含条件,准确计算数据,用科学、规范的学科语言进行描述。对作业能自我检查,能检验答案并找出错误及错误的原因,及时纠正,当作业本、练习本、试题等发下之后,首先查看老师的批改,对老师指出的错误必须及时改正,不放过一个错字或错题。没完成作业主动向老师说明理由,并及时补上,不推托理由,谦虚诚实、不撒谎。     备好、用好自己的“纠错本”和“精华本”。错题、难题、好题及时做标记还不能万事大吉,因为,对于大部分同学来说,那些错题、难题、好题都需要反复做三四遍才能真正掌握的(不排除一遍就能真正掌握的可能性,但这种学生为数不多,但部分学生都是“一听就懂,一看就会,一做就错”的那种)。因此,大部分同学都要把这些题整理到自己的纠错本和精华本上,隔一定时间就要复习一遍(千万不要自以为是)。
六、良好的解题习惯    解题时,能使精力高度集中,大脑兴奋,思维敏捷,很快进入最佳状态是良好的解题习惯。熟悉掌握各种题型的解决思路,以便打开思路,提高自己的分析、解决问题的能力是解题的目的。     反思是解题之后的重要环节。习题做完之后,要从五个层次反思:⑴怎样做出来的?想解题采用的方法;⑵为什么这样做?想解题依据的原理;⑶为什么想到这种方法?想解题的思路;⑷有无其它方法?哪种方法更好?想多种途径,培养求异思维;⑸能否变通一下而变成另一习题?想一题多变,促使思维发散。当然,如果发生错解,更应进行反思:错解根源是什么?解答同类试题应注意哪些事项?如何克服常犯错误?“吃一堑,长一智”,不断完善自己。常用的解决问题的学习方法:   (一)数学概念学习方法。      数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度。数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。    下面我们归纳出数学概念的学习方法:     阅读概念,记住名称或符号。 背诵定义,掌握特性。 举出正反实例,体会概念反映的范围。 进行练习,准确地判断。    (二)数学公式的学习方法     公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。 我们介绍的数学公式的学习方法是: 书写公式,记住公式中字母间的关系。 懂得公式的来龙去脉,掌握推导过程。 用数字验算公式,在公式具体化过程中体会公式中反映的规律。 将公式进行各种变换,了解其不同的变化形式。 将公式中的字母想象成抽象的框架,达到自如地应用公式。     (三)数学定理的学习方法。     一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。 下面我们归纳出数学定理的学习方法: 背诵定理。 分清定理的条件和结论。 理解定理的证明过程。 应用定理证明有关问题。 体会定理与有关定理和概念的内在关系。 有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行。     (四)初学几何证明的学习方法。 在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展。 看题画图。(看,写) 审题找思路(听老师讲解) 阅读书中证明过程。 回忆并书写证明过程。     (五)提高几何证明能力的化归法。 在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧。这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的。 化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束。此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程。 提高几何证明能力的化归法: 1.审题,弄清已知条件和求证结论。 2.画图,作辅助线,寻找证题途径。 3.记录证题途径的各个关键步骤。 4.总结证明思路,使证题过程在大脑中形成清淅的印象。
七、课外学习的习惯    开展数学课外活动,开阔学生的视野。对学有余力的学生,在基础知识已经掌握的情况下,在教师引导下开展丰富的课外活动,如解答趣味数学题:阅读有关数学课外读物,撰写学习数学的专题论文,记叙数学和数学家的故事,总结数学思想方法,解决力所能及的实际问题等,也可通过数学专题讲座或数学家报告会,数学演讲会,数学竞赛等活动,给自己一个发展数学能力的空间。     总而言之,只要学生在中学时代能养成良好的学习习惯,其习惯的惯性将会跟随学生走向社会,良好习惯将会使学生终生受益,从而完成教学的最根本宗旨,即学生全面的、可持续性的发展。

附:初中数学学习习惯量化表
一级目标 二级目标(每项指标4分,共100分) 个人
自评 小组
互评 教师
打分

制定计划
A1 B1 有当日目标、近期目标及长远目标。
B2 当日目标,周目标实现情况。
B3 实现目标的措施得当。

预习
A2 B4 做必要的预习,了解知识点并发现问题。
B5 用自己的语言符号做适当的标记。
B6 借助可能的外部条件,自己先独立解决部分疑问。
B7 做好课前准备,如必需的课本、练习本、相关的文具等

课堂听讲
A3 B8 课上专心听讲,不做与听讲无关的事情。
B9 积极思考,能在教师指导下解决预习遗留的问题。
B10 课上回答老师的问题先举手,要求回答问题声音洪亮,清楚。
B11 善于合作学习,积极参与问题讨论,敢于提出自己的见解,对与自己不同的见解要敢于争论,并不断修正、弥补自己的不足。
B12 会做课堂笔记,分清知识的重难点,为课下请教老师或与同学交流做准备。

及时复习
A4 B13 树立今日事今日毕的思想,及时反思当天所学的知识,并能纳入自己的知识结构中去。
B14 进行阶段性的周总结、月总结,不断完善知识结构。
B15 建立精华本及纠错本,并经常翻阅复习,作好知识的积累工作。

完成作业
A5 B16 养成先看课本后做作业的习惯。
B17 独立、认真完成作业,不抄袭别人作业
B18 作业书写认真、美观、规范,步骤完整。
B19 做作业专注,善于分析挖掘问题的条件,解题步骤科学。
B20 作业下发后及时改错,分析原因,不放过任何小的问题。

解决问题
A6 B21 善于挖掘问题的条件,能从不同角度和思路分析解决问题。
B22 善于总结解题规律,不断完善知识结构。
B23 能自主创新地发现新的问题,发表自己独到的见解。
课外学习
A7 B24 有一定的数学课外读物,并能挤时间进行学习、阅读。
B25 能从课外学习及活动中开阔自己的学习思维。
合计
平均
综合分数
1163945087
2010-03-21 · TA获得超过629个赞
知道答主
回答量:154
采纳率:0%
帮助的人:110万
展开全部
常见的初中数学公式

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
淡黑色的寂寞
2010-03-23 · TA获得超过130个赞
知道答主
回答量:93
采纳率:0%
帮助的人:36.9万
展开全部
常见的初中数学公式

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
数学主要还是多做题,还是多做做题吧!!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
召唤曾哥
2010-03-29
知道答主
回答量:33
采纳率:0%
帮助的人:0
展开全部
一步一步跟着老师来吧。。我也初三的- -要中考了前老师都有几轮的复习,如果认真都能补的回来,初中数学嘛。
完全平方式,平方差之类的公式,先背吧,然后做做老师推荐的指导丛书之类的,我这,压轴题都考二次函数,就那些题型,多做去年本省的压轴题,认识题型,圆和三角形一般都是分类讨论,相似都是和圆的函数一起考,像合并同类项、一元二次方程组等多练练,熟练的解就很快。。想当年我们老师一天N张卷子给我们练。。圆锥,圆柱的公式看看就好,投影之类的了解下- -我们这从不考它,三角形的全等,平行四边形。。。也去看看。。主要掌握思路~ 最好请个家教之类的比一个人复习好多了~
最后祝梦想成真咯~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xhj137605860
2010-03-28
知道答主
回答量:9
采纳率:0%
帮助的人:4.5万
展开全部
在做合并同类项的时候,需要看准项和系数,做题慢点没关系,拿分最重要,像卷子后面的难题,就不要考虑了,毕竟只占那么十几分。在做二元一次方程组的时候,解完后用计算器验算一下(解任何方程都一样)。再说几何题,将你看到条件想做的辅助线,在练习本上都做出来,不要用脑子想,最后观察下,基本上答案就出来了(前提:你做的辅助线都是对的)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(16)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式