已知Sn为等差数列{an}的前n项和,Sn=12n-n²。(1)|a1|+|a2|+|a3|+...+|a10|;
2个回答
展开全部
因为Sn=12n-n²,所以点(n,Sn)在二次函数y=-x²+12x的图象上,
当x=-12/[2×(-1)]=6时,y有最大值,
所以当n≤6时,an为正数;当n>6时,an为负数.
当n≤6时,
|a1|+|a2|+|a3|+···+|an|=a1+a2+a3+···+an=Sn=12n-n²;
当n>6时,
|a1|+|a2|+|a3|+···+|an|
=a1+a2+a3+···+a6-a7-a8-a9-···-an
=S6-(a7+a8+a9+···+an)
=S6-(Sn-S6)
=2S6-Sn
=2×(12×6-6²)-(12n-n²)
=n²-12n+72.
当x=-12/[2×(-1)]=6时,y有最大值,
所以当n≤6时,an为正数;当n>6时,an为负数.
当n≤6时,
|a1|+|a2|+|a3|+···+|an|=a1+a2+a3+···+an=Sn=12n-n²;
当n>6时,
|a1|+|a2|+|a3|+···+|an|
=a1+a2+a3+···+a6-a7-a8-a9-···-an
=S6-(a7+a8+a9+···+an)
=S6-(Sn-S6)
=2S6-Sn
=2×(12×6-6²)-(12n-n²)
=n²-12n+72.
展开全部
(1)
Sn =12n-n^2
n=1, a1=11
for n>=2
an = Sn -S(n-1)
=12 -(2n-1)
= 13-2n
an > 0
13-2n>0
n<13/2
|a1|+|a2|+...+|a10|
=a1+a2+...+a6-(a7+a8+a9+a10)
=(a1+a6)3- (a7+a10)2
=(11+1)3 +(1+7)2
=36+16
=52
(2)
for n<=6
|a1|+|a2|+...+|an|
=a1+a2+...+an
=12n-n^2
for n>=7
|a1|+|a2|+...+|an|
=a1+a2+...+a6 -(a7+a8+...+an)
=(a1+a6)3 -(a7+an)(n-6)/2
=(11+1)3 +(2n-12)(n-6)/2
=(n-6)^2+ 36
=n^2-12n+72
Sn =12n-n^2
n=1, a1=11
for n>=2
an = Sn -S(n-1)
=12 -(2n-1)
= 13-2n
an > 0
13-2n>0
n<13/2
|a1|+|a2|+...+|a10|
=a1+a2+...+a6-(a7+a8+a9+a10)
=(a1+a6)3- (a7+a10)2
=(11+1)3 +(1+7)2
=36+16
=52
(2)
for n<=6
|a1|+|a2|+...+|an|
=a1+a2+...+an
=12n-n^2
for n>=7
|a1|+|a2|+...+|an|
=a1+a2+...+a6 -(a7+a8+...+an)
=(a1+a6)3 -(a7+an)(n-6)/2
=(11+1)3 +(2n-12)(n-6)/2
=(n-6)^2+ 36
=n^2-12n+72
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询