已知关于x一元二次方程(a+c)x^2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长
(1)如果x=-1是方程的解,试判断△ABC的形状,并说明理由(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由(3)如果△ABC是等边三角形,试求这个一...
(1)如果x=-1是方程的解,试判断△ABC的形状,并说明理由
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由
(3)如果△ABC是等边三角形,试求这个一元二次方程的根 展开
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由
(3)如果△ABC是等边三角形,试求这个一元二次方程的根 展开
2个回答
展开全部
解:(1)△ABC是等腰三角形
理由:∵x=-1是方程的根
∴(a+c)×(-1)²-2b+(a-c)=0
∴a+c-2b+a-c=0
∴a-b=0
∴a=b
∴△ABC是等腰三角形
∵方程有两个相等的实数根
∴(2b)²-4(a+c)(a-c)=0
∴4b²-4a²+4c²=0
∴a²=b²+c²
∴△ABC是直角三角形
当△ABC是等边三角形
∴(a+c)x²+2bx+(a-c)=0
可整理为:
2ax²+2ax=0
∴x²+x=0
用配方法解一元二次方程
①把原方程化为一般形式。
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。
③方程两边同时加上一次项系数一半的平方。
④把左边配成一个完全平方式,右边化为一个常数。
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
展开全部
解:(1)△ABC是等腰三角形;
理由:∵x=-1是方程的根,
∴(a+c)×(-1)²-2b+(a-c)=0,
∴a+c-2b+a-c=0,
∴a-b=0,
∴a=b,
∴△ABC是等腰三角形;
∵方程有两个相等的实数根,
∴(2b)²-4(a+c)(a-c)=0,
∴4b²-4a²+4c²=0,
∴a²=b²+c²,
∴△ABC是直角三角形
当△ABC是等边三角形,∴(a+c)x²+2bx+(a-c)=0,
可整理为:
2ax²+2ax=0,
∴x²+x=0,
解得:x=0,x=-1.
理由:∵x=-1是方程的根,
∴(a+c)×(-1)²-2b+(a-c)=0,
∴a+c-2b+a-c=0,
∴a-b=0,
∴a=b,
∴△ABC是等腰三角形;
∵方程有两个相等的实数根,
∴(2b)²-4(a+c)(a-c)=0,
∴4b²-4a²+4c²=0,
∴a²=b²+c²,
∴△ABC是直角三角形
当△ABC是等边三角形,∴(a+c)x²+2bx+(a-c)=0,
可整理为:
2ax²+2ax=0,
∴x²+x=0,
解得:x=0,x=-1.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询