请教一道高数的证明题 设b>a>e,证明(a^b)>(b^a)

 我来答
九悦本溪儿
2020-09-18 · TA获得超过1233个赞
知道小有建树答主
回答量:1789
采纳率:100%
帮助的人:8.2万
展开全部
要证b^a>a^b
只需证明ln(b^a)>ln(a^b)
即:alnb>blna
又:a>b>e
则:lna>lnb>1
所以只需证明lnb/b>lna/a即可
令f(x)=lnx/x
f'(x)=(1-lnx)/x^2
当lnx>1即x>e时,f'(x)b>e时,f(a)lna/a
故原命题得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式