将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与

将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点F处,FN与DC交于点M,连接BF与EG交于点P.(1)当点F... 将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M,连接BF与EG交于点P.(1)当点F与AD的中点重合时(如图1):①△AEF的边AE=______cm,EF=______cm,线段EG与BF的大小关系是EG______BF;(填“>”、“=”或“<”)②求△FDM的周长. (2)当点F在AD边上除点A、D外的任意位置时(如图2):③试问第(1)题中线段EG与BF的大小关系是否发生变化?请证明你的结论;④当点F在何位置时,四边形AEGD的面积S最大?最大值是多少? 展开
 我来答
啊岚君0Ek
推荐于2018-04-14
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:(1)①AE=3cm,EF=5cm;EG=BF,
设AE=x,则EF=8-x,AF=4,∠A=90°,42+x2=(8-x)2,x=3,
∴AE=3cm,EF=5cm,EG=BF,
②解:如图1,∵∠MFE=90°,
∴∠DFM+∠AFE=90°,
又∵∠A=∠D=90°,∠AFE=∠DMF,
∴△AEF∽△DFM,
EF
FM
AE
DF
AF
DM

又∵AE=3,AF=DF=4,EF=5,
5
FM
3
4
FM=
20
3
3
4
4
DM
DM=
16
3

∴△FMD的周长=4+
20
3
+
16
3
=16;

(2)①EG=BF不会发生变化,
理由:证明:如图2,∵B、F关于GE对称,
∴BF⊥EG于P,过G作GK⊥AB于K,
∴∠FBE=∠KGE,
在正方形ABCD中,GK=BC=AB,∠A=∠EKG=90°,
∴△AFB≌△KEG(AAS),
∴EG=BF,
②如图2,设AF=x,EF=8-AE,x2+AE2=(8-AE)2
∴AE=4-
1
16
x2

∵△AFB≌△KEG,
∴AF=EK=x,AK=AE+EK=AF+AE=4-
1
16
x2
+x,(10分)
S=
AE+DG
2
×8=0.5×8(AE+AK)=4×(4-
1
16
x2
+4-
1
16
x2
+x)=?
1
2
x2+4x+32

S=?
1
2
(x?4)2+40
,(0<x<8)
当x=4,即F与AD的中点重合时,S最大=40.(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式