已知点P(x0,y0)是渐近线为2x±3y=0且经过定点(6,23)的双曲线C1上的一动点,点Q是P关于双曲线C1实轴

已知点P(x0,y0)是渐近线为2x±3y=0且经过定点(6,23)的双曲线C1上的一动点,点Q是P关于双曲线C1实轴A1A2的对称点,设直线PA1与QA2的交点为M(x... 已知点P(x0,y0)是渐近线为2x±3y=0且经过定点(6,23)的双曲线C1上的一动点,点Q是P关于双曲线C1实轴A1A2的对称点,设直线PA1与QA2的交点为M(x,y),(1)求双曲线C1的方程;(2)求动点M的轨迹C2的方程;(3)已知x轴上一定点N(1,0),过N点斜率不为0的直线L交C2于A、B两点,x轴上是否存在定点 K(x0,0)使得∠AKN=∠BKN?若存在,求出点K的坐标;若不存在,说明理由. 展开
 我来答
os凉凉UV23SN30
推荐于2016-01-03 · TA获得超过158个赞
知道答主
回答量:137
采纳率:0%
帮助的人:148万
展开全部
(1)可设c1方程为 4x2-9y2=λ,又点(6,2
3
)在曲线上代入得λ=36.
所以双曲线C1的方程为:
x2
9
?
y2
4
=1
                      …(4分)
(2)由题意A1(-3,0),A2(3,0),Q(x0,-y0).
当P异于顶点时,KPA 1=
y
x+3
y0
x0+3
KQA 2=
y
x?3
?y0
x0?3

所以 
y2
x2?9
?y02
x02?9
=?
4
9
   即  
x2
9
+
y2
4
=1,  (x≠±3)

当P为顶点时直线PA1与 QA2的交点为顶点
所以      
x2
9
+
y2
4
=1.…(9分)
(3)设L交曲线C2于A(x1,y1),B(x2,y2),可设L方程为x=ty+1 (t≠0)
代入C2方程得   (9+4t2)y2+8ty-32=0
y1+y2
?8t
9+4t2
,y1y2=
?32
9+4t2

若存在K,则KAK+KBK=0,
∴y1(ty2+1-xK)+y2(ty1+1-xK)=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式