已知函数f(x)=ax?bx?2lnx,f(1)=0.(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;(2

已知函数f(x)=ax?bx?2lnx,f(1)=0.(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;(2)若函数f(x)的图象在x=1处的切线的斜率为0... 已知函数f(x)=ax?bx?2lnx,f(1)=0.(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(1an+1)?nan+1.①若a1≥3,求证:an≥n+2;②若a1=4,试比较11+a1+11+a2+…+11+an与25的大小,并说明你的理由. 展开
 我来答
taosbQT42
推荐于2016-07-05 · 超过68用户采纳过TA的回答
知道答主
回答量:131
采纳率:0%
帮助的人:165万
展开全部
(1)∵f(1)=a-b=0,∴a=b,∴f(x)=ax?
a
x
?2lnx

∴f′(x)=a+
a
x2
-
2
x

要使函数f(x)在定义域(0,+∞)内为单调函数,则在(0,+∞)内f′(x)恒大于0或恒小于0,
当a=0时,f′(x)=-
2
x
<0在(0,+∞)内恒成立;
当a>0时,要使f′(x)=a(
1
x
-
1
a
2+a-
1
a
>0恒成立,则a-
1
a
>0,解得a>1,
当a<0时,要使f′(x)=a(
1
x
-
1
a
2+a-
1
a
><0恒成立,则a-
1
a
<0,解得a<-1,
所以a的取值范围为a>1或a<-1或a=0.
(2)①∵函数f(x)的图象在x=1处的切线的斜率为0,
∴f′(1)=0,即a+a-2=0,解得 a=1
∴f′(x)=(
1
x
-1)2,an+1=an2-nan+1
下面用数学归纳法证明:
(Ⅰ)当n=1,a1≥3=1+2,不等式成立;
(Ⅱ)假设当n=k时,不等式成立,即:ak≥k+2,∴ak-k≥2>0,
∴ak+1=ak(ak-k )+1≥2(k+2)+1=( k+3)+k+2>k+3
也就是说,当n=k+1时,ak+1≥(k+1)+2成立
根据(Ⅰ)(Ⅱ)对于所有n≥1,都有an≥n+2成立
②由①得an=an-1(an-1-2n+2)+1≥an-1[2(n-1)+2-2n+2]+1=2an-1+1,
于是an+1≥2(an-1+1)(n≥2),
所以a2+1≥2(a1+1),a3+1≥2(a2+1)…,an+1≥2(an-1+1)
累乘得:an+1≥2n-1(a1+1),则
1
1+an
1
2n?1
?
1
1+a1
(n≥2),
所以
1
1+a1
+
1
1+a2
+…+
1
1+an
1
1+a1
(1+
1
2
+…+
1
2n?1
)=
2
5
(1-
1
2n
)<
2
5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式