已知数列{a n },{b n },且满足a n+1 -a n =b n (n=1,2,3,…).(1)若a 1 =0,b n =2n,求数列{a
已知数列{an},{bn},且满足an+1-an=bn(n=1,2,3,…).(1)若a1=0,bn=2n,求数列{an}的通项公式;(2)若bn+1+bn-1=bn(n...
已知数列{a n },{b n },且满足a n+1 -a n =b n (n=1,2,3,…).(1)若a 1 =0,b n =2n,求数列{a n }的通项公式;(2)若b n+1 +b n-1 =b n (n≥2),且b 1 =1,b 2 =2.记c n =a 6n-1 (n≥1),求证:数列{c n }为常数列;(3)若b n+1 b n-1 =b n (n≥2),且b 1 =1,b 2 =2.若数列{ a n n }中必有某数重复出现无数次,求首项a 1 应满足的条件.
展开
1个回答
展开全部
(1)当n≥2时,有 a n =a 1 +(a 2 -a 1 )+(a 3 -a 2 )+…+(a n -a n-1 ) =a 1 +b 1 +b 2 +…+b n-1 =2×1+2×2+…+2×(n-1) =2×
∴数列{a n }的通项为 a n = n 2 -n . (2)∵b n+1 +b n-1 =b n (n≥2), ∴对任意的n∈N * 有b n+6 =b n+5 -b n+4 =-b n+3 =b n+1 -b n+2 =b n , ∴数列{b n }是一个以6为周期的循环数列 又∵b 1 =1,b 2 =2, ∴b 3 =b 2 -b 1 =1,b 4 =b 3 -b 2 =-1,b 5 =b 4 -b 3 =-2,b 6 =b 5 -b 4 =-1. ∴c n+1 -c n =a 6n+5 -a 6n-1 =a 6n+5 -a 6n+4 +a 6n+4 -a 6n+3 +…+a 6n -a 6n-1 =b 6n+4 +b 6n+3 +b 6n+2 +b 6n+1 +b 6n +b 6n-1 =b 4 +b 3 +b 2 +b 1 +b 6 +b 5 =-1+1+2+1-1+-2=0(n≥1), 所以数列{c n }为常数列. (3)∵b n+1 b n-1 =b n (n≥2),且b 1 =1,b 2 =2, ∴b 3 =2,b 4 =1, b 5 =
且对任意的n∈N * ,有 b n+6 =
设c n =a 6n+i (n≥0),(其中i为常数且i∈{1,2,3,4,5,6}, ∴c n+1 -c n =a 6n+6+i -a 6n+i =b 6n+i +b 6n+i+1 +b 6n+i+2 +b 6n+i+3 +b 6n+i+4 +b 6n+i+5 =b 1 +b 2 +b 3 +b 4 +b 5 +b 6 =1+2+2+1+
所以数列{a 6n+i }均为以7为公差的等差数列. 记 f n =
(其中n=6k+i,k≥0,i为{1,2,3,4,5,6}中的一个常数), 当 a i =
当 a i ≠
= ( a i -
= ( a i -
①若 a i >
②若 a i <
综上,当 a i =
当i=1时, a 1 =
此时的 a 1 = a 2 - b 1 =
当i=3时, a 3 =
此时的 a 2 = a 3 - b 2 =
当i=4时, a 4 =
此时的 a 1 = a 4 - b 3 - b 2 - b 1 =-
当i=5时, a 5 =
此时的 a 1 = a 5 - b 4 - b 3 - b 2 - b 1 =-
当i=6时, a 6 =
此时的a 1 =a 6 -b 5 -b 4 -b 3 -b 2 -b 1 =
|