(2013?盐城)如图,在以点O为原点的平面直角坐标系中,一次函数y=-12x+1的图象与x轴交于点A,与y轴交于
(2013?盐城)如图,在以点O为原点的平面直角坐标系中,一次函数y=-12x+1的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且OC=12AB,反比例函数y=...
(2013?盐城)如图,在以点O为原点的平面直角坐标系中,一次函数y=-12x+1的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且OC=12AB,反比例函数y=kx的图象经过点C,则所有可能的k值为12或-1150.12或-1150..
展开
1个回答
展开全部
解答:解:在y=-
x+1中,令y=0,则x=2;令x=0,得y=1,
∴A(2,0),B(0,1).
在Rt△AOB中,由勾股定理得:AB=
.
设∠BAO=θ,则sinθ=
,cosθ=
.
当点C为线段AB中点时,有OC=
AB,
∵A(2,0),B(0,1),
∴C(1,
).
以点O为圆心,OC长为半径作圆,与直线AB的另外一个交点是C′,则点C、点C′均符合条件.
如图,过点O作OE⊥AB于点E,则AE=OA?cosθ=2×
=
,
∴EC=AE-AC=
-
=
.
∵OC=OC′,∴EC′=EC=
,∴AC′=AE+EC′=
+
=
.
过点C′作CF⊥x轴于点F,则C′F=AC′?sinθ=
×
=
,
AF=AC′?cosθ=
×
=
,
∴OF=AF-OA=
-2=
.
∴C′(-
,
1 |
2 |
∴A(2,0),B(0,1).
在Rt△AOB中,由勾股定理得:AB=
5 |
设∠BAO=θ,则sinθ=
| ||
5 |
2
| ||
5 |
当点C为线段AB中点时,有OC=
1 |
2 |
∵A(2,0),B(0,1),
∴C(1,
1 |
2 |
以点O为圆心,OC长为半径作圆,与直线AB的另外一个交点是C′,则点C、点C′均符合条件.
如图,过点O作OE⊥AB于点E,则AE=OA?cosθ=2×
2
| ||
5 |
4
| ||
5 |
∴EC=AE-AC=
4
| ||
5 |
| ||
2 |
3
| ||
10 |
∵OC=OC′,∴EC′=EC=
3
| ||
10 |
4
| ||
5 |
3
| ||
10 |
11
| ||
10 |
过点C′作CF⊥x轴于点F,则C′F=AC′?sinθ=
11
| ||
10 |
| ||
5 |
11 |
10 |
AF=AC′?cosθ=
11
| ||
10 |
2
| ||
5 |
11 |
5 |
∴OF=AF-OA=
11 |
5 |
1 |
5 |
∴C′(-
1 |
5 |
11
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|